= Level 1 = dim scalar vectors scalars 5-el-array xROTG A B C S generate plane rotation xROTMG D1 D2 A B PARAM generate modified plane rotation xROT N X INCX Y INCY C S apply plane rotation xROTM N X INCX Y INCY PARAM apply modified plane rotation xSWAP N X INCX Y INCY swap x and y xSCAL N ALPHA X INCX scale x xCOPY N X INCX Y INCY y := x xAXPY N ALPHA X INCX Y INCY y := α⋅x + y xDOT N X INCX Y INCY x^T y xDOTU N X INCX Y INCY x^T y xDOTC N X INCX Y INCY x^H y xxDOT N ALPHA? X INCX Y INCY α + x^T y xNRM2 N X INCX ||x|| xASUM N X INCX |re[x]| + |im[x]| IxAMAX N X INCX first max of |re[x]| + |im[x]| = Level 2 = (MV is matrix vector product) (R Rank-one update) (R2 Rank-two update) (SV solve a system of linear equations) LDA is the leading dimension of A (Band storage: a_{ij} is stored in AB(ku + 1 + i - j, j) where kl is the number of subdiagonals. options dim bWidth Scalar Matrix Vector Scalar Vector Action xGEMV TRANS M N ALPHA A LDA X INCX BETA Y INCY y := α A x + β y (or transposed A or hermitian A) xGBMV UPLO M N KL KU ALPHA A LDA X INCX BETA Y INCY y := α A x + β y (or transposed A or hermitian A) xHEMV UPLO N ALPHA A LDA X INCX BETA Y INCY y := α A x + β y xHBMV UPLO N ALPHA A LDA X INCX BETA Y INCY y := α A x + β y xHPMV UPLO N ALPHA AP X INCX BETA Y INCY y := α A x + β y xSYMV UPLO N ALPHA A LDA X INCX BETA Y INCY y := α A x + β y xSBMV UPLO N ALPHA A LDA X INCX BETA Y INCY y := α A x + β y xSPMV UPLO N ALPHA AP X INCX BETA Y INCY y := α A x + β y xTRMV UPLO TRANS DIAG N A LDA X INCX x := A x (or transposed A or hermitian A) xTBMV UPLO TRANS DIAG N K A LDA X INCX x := A x (or transposed A or hermitian A) xTPMV UPLO TRANS DIAG N AP X INCX x := A x (or transposed A or hermitian A) xTRSV UPLO TRANS DIAG N A LDA X INCX x := A^(-1) x (or transposed A inverse or hermitian A inverse) xTBSV UPLO TRANS DIAG N K A LDA X INCX x := A^(-1) x (or transposed A inverse or hermitian A inverse) xTPSV UPLO TRANS DIAG N AP X INCX x := A^(-1) x (or transposed A inverse or hermitian A inverse) options dim Scalar Vector Matrix Action xGER M N ALPHA X INCX Y INCY A LDA A := α x y^T + A xGERU M N ALPHA X INCX Y INCY A LDA A := α x y^T + A xGERC M N ALPHA X INCX Y INCY A LDA A := α x y^H + A xHER UPLO N ALPHA X INCX A LDA A := α x x^H + A xHPR UPLO N ALPHA X INCX AP A := α x x^H + A xHER2 UPLO N ALPHA X INCX Y INCY A LDA A := α x y^H + y (α x)^H + A xHPR2 UPLO N ALPHA X INCX Y INCY AP A := α x y^H + y (a x)^H + A xSYR UPLO N ALPHA X INCX A LDA A := α x x^Y + A xSYR2 UPLO N ALPHA X INCX Y INCY A LDA A := a x y^T + α y x^Y + A xSPR2 UPLO N ALPHA X INCX Y INCY AP A := a x y^T + a y x^T + A = Level 3 =