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Evanescent Fields and Bottle Resonators

December 31, 2015

Abstract

We research the storage of light in a Bottle Resonator, an extremely thin
disconnected strand of fiber. We change the distance of a coupling fiber
to the Bottle Resonator and the laser frequency and analyze the effect of
distance and laser frequency on stored and transmitted power (out of the
Bottle Resonator or bypassing it).

1 Introduction

1.1 Theory

1.1.1 Evanescent Fields

At the interface between two media with different optical indices, in general an
incoming light wave can be reflected and/or refracted. It is possible to choose the
incident angle in such a way (large angle with respect to the normal to the interface,
that is a small angle with respect to the interface) that no refracted wave results from
the incoming wave. However, then the electric field decays exponentially beyond
the interface.

Snell’s law is

n1 sin(θ1) = n2 sin(θ2)

where θ1 and θ2 are measured from the normal to the interface plane.
If n2 < n1, the refracted wave only exists for angles θ1 smaller than some critical

angle:

sin(θ1) =
n2

n1

sin(θ2)

− arcsin

(
n2

n1

)
≤ θ1 ≤ arcsin

(
n2

n1

)
If θ1 is bigger than this critical angle (for n1 = 1.5, n2 = 1, that critical angle is

≈ 42°), then no refracted wave into the second medium exists.
In the following, the case where θ1 > 42° will be considered.
In particular, what happens to the part that would have been the refracted wave

will be considered.
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Let E2 = E02 exp (i (k2 · r− ωt)). Split k (with k2 := |k2| = 2π n2

λ0
) into a com-

ponent kx = k2 sin(θ2) parallel to the interface and a component ky = k2 cos(θ2) =

k2

√
1− (sin(θ2))2 = k2

√
1−

(
n1

n2
sin(θ1)

)2

describing the propagation normal to

the interface.
By precondition, sin(θ1) > n2

n1
. Therefore, the argument of the square root above

is certainly negative.

ky = k2i

√(
n1

n2
sin(θ1)

)2

− 1.

Let β = k2

√(
n1

n2
sin(θ1)

)2

− 1 which is real.

ky = iβ

E2 = E02 exp (i (kxrx + kyry − ωt))
E2 = E02 exp(−βry) exp (i(kxrx − ωt))

E2 exponentially decays with distance to the interface and is called ”evanescent
field”.

β is:

β =
2π

λ0

√
(n1 sin(θ1))2 − n 2

2

Light from one medium can be coupled into another medium if the distance between
the media is small enough so that the evanescent fields overlap. This phenomenon
is called ”frustrated internal reflection”.

1.1.2 Fabry Pérot Resonator

A Fabry Pérot Resonator consists of two mirrors, both somewhat transmissive.
The mirrors are oriented so that most light is captured between them and reflected
from them. The light between the two mirrors will form a (Gaussian) standing wave
because of the reflection. Let l be the length of the space between the two mirrors,
i be a natural number, i > 0, n be the refractive index of the medium, c be the
speed of light. Then a standing wave is formed if:

l = i
λ0

2n

At the resonance frequencies νi there’s constructive interference between the incom-
ing light and the light between the mirrors.

νi = i
c

2n l

Let τ be the time constant of the decay of the energy between the mirrors in the
absense of a driving light field, T be the reciprocal of the optical resonance frequency.
Then the quality factor Q is defined as:

Q = 2π
τ

T
= ω0 τ

Let N be the number of round-trips. Then the finesse F is defined as:

F = 2πN
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1.1.3 Bottle-Resonator Coupling

In a thin strand of optical fiber (called ”Bottle Resonator”) similar wave modes
can also be observed. Our setup uses such an ultrathin fiber which is not connected
to anything by cable. It’s interesting how much energy is stored in the Bottle
Resonator mode. According to [1], a system (Bottle Resonator, Light Field) is
described by:

d

dt
a = i (ω0 − ω) a− 1

2

(
1

τ0

+
1

τfiber

)
a+

1

τ 2
fiber

s

... where s is the input field amplitude and t the output field amplitude. The power
transmitted through the coupling fiber is then proportional to p∗ p, although the
energy stored in the resonator is proportional to a∗ a.

The transfer of optical energy between the mode of the coupling fiber and the
bottle mode is described by the characteristic time constant τfiber.

The intrinsic resonator energy loss is described by τ0.
ω0 is the resonance frequency of the bottle mode.
In the absence of a driving light field, the equation above is solved for energy as:

d

dt
W = a∗

d

dt
a+ a

d

dt
a∗ = −

(
1

τ0

+
1

τfiber

)
W

d

dt
W = −

(
1

τ0

+
1

τfiber

)
W

1

τload
:=

1

τ0

+
1

τfiber

W = W0 exp

(
−t
(

1

τload

))
Qload := ω0 τload

1.1.4 WGM in Bottle Resonator

Let there be a driving light field.
The light path of a Bottle Resonator mode (WGM) is generally circular and can

have multiple rings. Q, νi are similar to the Fabry Pérot resonator, although l is
the circumference of the fiber now. Differences are: modes with multiple rings are
possible, νi depends on the number of rings (indirectly by i).

Let ν0 be the optical resonance frequency of the mode, ∆ν be the spectral
linewidth. The loaded quality factor Qload is [1, Section 2.1]:

Qload =
ν0

∆ν

And the finesse is:

F =
∆νFSR

∆ν

1.1.5 Bottle Resonator Free Spectral Range ∆νFSR

We assume the diameter of the resonator is 60 µm. Then its circumference is
l = π 188.5 µm.
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Then ∆νFSR = c
2nl

= 299792458 m/s
2·nπ ·60µm

(from the resonance condition).

Because in the Fabry-Pérot cavity, a similar equation 100 MHz = c
2nL

holds, we
can calculate n = 1.49896.

Next, we assume that the Fabry-Pérot Resonator and the Bottle Resonator use
the same material (with the same refractive index).

Therefore, ∆νFSR ≈ 530.5 GHz for the Bottle Resonator.

1.1.6 Bottle Resonator Loss Mechanisms

A photon in the resonator can be lost by:

� Absorption by erbium ions (causing green fluorescence)

� Scattering on the surface of the coupling fiber (intrinsic loss)

� Scattering away at the resonator-fiber coupling point (parasitic loss)

We introduce the coupling parameter K defined by:

K =
Kfiber

Kpara +K0

(1)

where Kfiber = 1/τfiber describes the rate of coupling between the coupling fiber
mode and the resonator mode, K0 = 1/τ0 describes the rate of coupling to intrinstic
loss channels and Kpara = 1/τpara describes the rate of coupling to parasitic loss
channels.

Then the probability that a photon stored in the resonator is coupled back into
the fiber (rather than lost) is:

Ephoton =
Kfiber

Kpara +K0 +Kfiber

=
1

1 + 1/K
(2)

1.1.7 Bottle Resonator Coupling Regimes

It’s common to classify different coupling regimes dependent on the ratio τ0
τfiber

:

� Under-coupled regime: τfiber > τ0. For a large gap x, the transmission Tres is
close to 1 and increases with distance. Only little power is transferred to the
resonator - where it is dissipated.

� Critical coupling: τfiber = τ0. For one particular gap the power that goes into
the resonator is just as much as is lost by intrinsic losses. While the light field
leaving the resonator couples back into the coupling fiber it has a phase shift
of π and thus there is almost zero transmission to the coupling fiber.

� Over-coupled regime: τfiber < τ0. For even smaller gaps x, the relative trans-
mission Tres will become close to 1 again.
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1.2 Experimental Setup

A monochromatic tunable laser is used as light source to feed light into both a
reference Fabry Pérot Resonator and our Bottle Resonator. The bottle resonator
is standalone, but is in close proximity to a coupling fiber that is transporting the
light from the source. The distance between bottle resonator and coupling fiber
can be varied (in one direction only) by a stepper motor (for coarse tuning) and
a piezo (for fine tuning). The light is sent into the fiber in such a way that total
reflection happens. Then, an evanescent wave still exists outside the (thin) coupling
fiber. Because the Bottle Resonator is also very thin, the evanescent waves couple
by frustrated internal reflection. (It is also possible for the wave in the Bottle
Resonator to continue into the coupling fiber again, usually there will be a phase
shift of π then)

We measure the power at the end of the coupling fiber using a photodiode 1.
We also measure the Fabry Pérot Resonator’s output power using a photodiode 2.
The Fabry Pérot Resonator will be used as reference in order to be able to read
frequencies off the graph.

Both results are then fed into a oscilloscope. We use a scan module to scan the
frequency of the laser and trigger the oscilloscope. The horizontal axis corresponds
to the laser frequency, the vertical axis corresponds to photodiode voltage. Graphs
are of (1) voltage of photodiode 1, (2) voltage of photodiode 2.

Note that the goal is to judge the power stored in the Bottle Resonator, so that
would be the complement of photodiode 1’s signal.

Picture of the Bottle Resonator, already glowing with light from the compling
fiber (which originally came from the laser):

Figure 1: Bottle Resonator

2 Results

2.1 Measurements and Data Analysis

First we determined the Fabry-Pérot mode spacing. For this, for each oscillator
file we did the following:

� We found the beginning first-in-time Lorenzian, tmin
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� We found the end of the last-in-time Lorenzian, tmax

� We counted the number of Lorenzians (peaks), c

� We calculated the mode spacing by ni := (tmax − tmin)/c.

Let n be the union of all the ni intervals. Thus the Fabry-Perot mode spacing n is
(units will cancel through the division g/n but they are formally seconds):

0.001067 ≤ n ≤ 0.001127

The value n corresponds to the known Fabry-Perot mode spacing 100 MHz and we
later use it to convert the g linewidth of the bottle resonator to MHz.

2.1.1 Critical Coupling

For Critical Coupling, the transmission comes closest to zero because all the
power is dissipated in the resonator. The light leaving the resonator couples back
into the coupling fiber but is phase-shifted by π.

The corresponding quality factor is:

Qcrit =
Q0

2

g = 118.403 · 10−5 ± 8.07 · 10−6, ∆g
g

= (0.6816%)

∆ν := 100 MHz g/n = (108± 3.7) MHz
Qload := ν0

∆ν
= 3.26 · 106 ± 1.1 · 105

F := ∆νFSR

∆ν
= 4.92 · 103 ± 1.7 · 102

Figure 2: File 58

For critical coupling, we determined the linewidth ∆ν, loaded quality factor
Qload = ν0

∆ν
(where ν0 is the mode resonance frequency which we approximated

using c = ν0λ0 with λ0 = 852 nm, one of the used wavelengths of our laser. We
assumed that the extra error by not using a more variable wavelength is negilible).

We determine the intrinsic quality factor Q0 by Q0 = 2Qload:

Q0 = 6520000± 110000
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2.1.2 Resonant Transmission vs Coupling Gap

Next we studied how transmission changes with gap, starting at a distance of
1.3µm, moving to less distance. The x coordinates in the following plots are relative
to 13.85 µm and using only Measurement 2 (we did not plot Measurement 1 because
it is extremely similar and the x coordinate ranges are overlapping). The conversion
from piezo voltages to distances used was: ∆x = ∆Upiezo 0.25 µm/V.

Our dips were quite small (dip height 40% of the maximum signal). Therefore,
we renormalized the data for Tres to the interval 0..1. We call the normalized data
Tnorm.
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Fitting this to the theroetically expected formula gave us large uncertainities:

a := 1.586, amin := −8.065 · 106, amax := 8.065 · 106

b := −0.006795, bmin := −8.349 · 105, amax := 8.349 · 105

c := 0.1642, cmin := 0.1403, cmax := 0.188

Tnorm(x) =

(
1− a exp(−(x− b)/c)
1 + a exp(−(x− b)/c)

)2
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2.1.3 Quality factor vs. Coupling Gap
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2.1.4 Photon Coupling Efficiency

For the overcoupled regime:

K =
1 +
√
Tnorm

1−
√
Tnorm

For the undercoupled regime:

K =
1−
√
Tnorm

1 +
√
Tnorm
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log(K) was fit with g(x) := a x + b µm, with a = −6.75751 ± 0.5784, b =
0.630094± 0.1854.

Ephoton = 1
1+1/K

.
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2.2 Conclusion and Summary

We reproduced the expected linear dependency of log(K) (with K being the
photon coupling efficiency) vs x.
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The mode we used did not couple that well, our dips were just 40% of the
maximum, therefore our analysis has some extra error.

More sources of error:

� absorption

� scattering at the beam splitter

� scattering at surface blemishes, dust

3 Appendix

Laser was set up with:
Name Value

Temperature 41.6 °C
Wavelength 852 nm
Current 50.7 mA
Scanning Amplitude 5.1

Fabry-Pérot-Frequency = 100 MHz.
Fabry-Pérot-Cavity-Length L := 1 m

3.1 Fit Function

The function used for fitting the Lorentzian in the mode spectra (see appendix
3.2, appendix 3.3) was proportional to (1− Lorentzian):

f(x) :=

{
0, g < 0

a+ b
(

1− 1
π

g/2
(x−x0)2+(g/2)2

)
, g ≥ 0

f(x0) =

{
0, g < 0

a+ b
(

1− 1
π

1
g/2

)
, g ≥ 0

The center height h of the transmission dip is thus approximately:

h := f(∞)− f(x0)

h ≈ b

π g/2

3.2 Measurement 1

Stepper position = 44.0002µm
With polarization 0, 0.

60V = 15µm

V = 0.25µm
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Time Piezopos/V Piezopos/µm (calc.) File
21:08 48.0 12.0 44
21:10 47.4 11.85 45
21:11 46.8 11.7 46
21:11 46.4 11.6 47
21:13 46.0 11.5 48
21:14 45.6 11.4 49
21:15 45.2 11.3 50
21:17 45.0 11.25 51
21:18 44.6 11.15 52
21:19 44.3 11.075 53

The FWHM (∆ν) of the WGM mode (CH1) is as follows:

g = 79.2308 · 10−5 ± 1.31 · 10−5, ∆g
g

= (1.654%)

∆ν := 100 MHz g/n = (72.3± 3.2) MHz
Qload := ν0

∆ν
= 4.88 · 106 ± 2.1 · 105

F := ∆νFSR

∆ν
= 7.35 · 103 ± 3.2 · 102

Figure 3: File 44
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g = 80.618 · 10−5 ± 1.105 · 10−5, ∆g
g

= (1.371%)

∆ν := 100 MHz g/n = (73.6± 3) MHz
Qload := ν0

∆ν
= 4.79 · 106 ± 2 · 105

F := ∆νFSR

∆ν
= 7.22 · 103 ± 3 · 102

Figure 4: File 45

g = 88.6968 · 10−5 ± 9.348 · 10−6, ∆g
g

= (1.054%)

∆ν := 100 MHz g/n = (80.9± 3.1) MHz
Qload := ν0

∆ν
= 4.35 · 106 ± 1.6 · 105

F := ∆νFSR

∆ν
= 6.56 · 103 ± 2.5 · 102

Figure 5: File 46
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g = 93.3021 · 10−5 ± 8.961 · 10−6, ∆g
g

= (0.9605%)

∆ν := 100 MHz g/n = (85.1± 3.1) MHz
Qload := ν0

∆ν
= 4.14 · 106 ± 1.5 · 105

F := ∆νFSR

∆ν
= 6.24 · 103 ± 2.3 · 102

Figure 6: File 47

g = 111.514 · 10−5 ± 9.395 · 10−6, ∆g
g

= (0.8425%)

∆ν := 100 MHz g/n = (102± 3.6) MHz
Qload := ν0

∆ν
= 3.46 · 106 ± 1.2 · 105

F := ∆νFSR

∆ν
= 5.22 · 103 ± 1.9 · 102

Figure 7: File 48
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g = 139.057 · 10−5 ± 7.996 · 10−6, ∆g
g

= (0.575%)

∆ν := 100 MHz g/n = (127± 4.2) MHz
Qload := ν0

∆ν
= 2.78 · 106 ± 9.2 · 104

F := ∆νFSR

∆ν
= 4.19 · 103 ± 1.4 · 102

Figure 8: File 49

g = 175.918 · 10−5 ± 1.135 · 10−5, ∆g
g

= (0.645%)

∆ν := 100 MHz g/n = (161± 5.4) MHz
Qload := ν0

∆ν
= 2.19 · 106 ± 7.4 · 104

F := ∆νFSR

∆ν
= 3.31 · 103 ± 1.1 · 102

Figure 9: File 50
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g = 272.79 · 10−5 ± 1.668 · 10−5, ∆g
g

= (0.6115%)

∆ν := 100 MHz g/n = (249± 8.3) MHz
Qload := ν0

∆ν
= 1.42 · 106 ± 4.7 · 104

F := ∆νFSR

∆ν
= 2.13 · 103 ± 71

Figure 10: File 51

g = 363.512 · 10−5 ± 2.604 · 10−5, ∆g
g

= (0.7165%)

∆ν := 100 MHz g/n = (332± 11) MHz
Qload := ν0

∆ν
= 1.06 · 106 ± 3.7 · 104

F := ∆νFSR

∆ν
= 1.6 · 103 ± 55

Figure 11: File 52
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g = 600.628 · 10−5 ± 6.532 · 10−5, ∆g
g

= (1.087%)

∆ν := 100 MHz g/n = (548± 21) MHz
Qload := ν0

∆ν
= 6.43 · 105 ± 2.5 · 104

F := ∆νFSR

∆ν
= 969± 37

Figure 12: File 53

3.3 Measurement 2

Stepper position = 42.2699µm
With polarization 210 for the λ/2 polarisator and 140 for the λ/4 polarisator in

order to maximize dip height:
Time Piezopos/V Piezopos/µm (calc.) File
21:26 57.7 14.425 54
21:28 56.9 14.225 55
21:29 56.2 14.05 56
21:30 55.8 13.95 57
21:31 55.4 13.85 58 (crit.)
21:32 55.0 13.75 59
21:33 54.4 13.6 60
21:34 54.2 13.55 61
21:35 53.9 13.475 62
21:36 53.6 13.4 63
21:38 53.3 13.325 - (touches)

The FWHM (∆ν) of the WGM mode (CH1) is as follows:
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g = 80.3815 · 10−5 ± 8.37 · 10−6, ∆g
g

= (1.041%)

∆ν := 100 MHz g/n = (73.3± 2.8) MHz
Qload := ν0

∆ν
= 4.8 · 106 ± 1.8 · 105

F := ∆νFSR

∆ν
= 7.24 · 103 ± 2.7 · 102

Figure 13: File 54

g = 86.0937 · 10−5 ± 9.09 · 10−6, ∆g
g

= (1.056%)

∆ν := 100 MHz g/n = (78.6± 3) MHz
Qload := ν0

∆ν
= 4.49 · 106 ± 1.7 · 105

F := ∆νFSR

∆ν
= 6.76 · 103 ± 2.6 · 102

Figure 14: File 55
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g = 91.3406 · 10−5 ± 8.472 · 10−6, ∆g
g

= (0.9275%)

∆ν := 100 MHz g/n = (83.3± 3.1) MHz
Qload := ν0

∆ν
= 4.23 · 106 ± 1.5 · 105

F := ∆νFSR

∆ν
= 6.37 · 103 ± 2.3 · 102

Figure 15: File 56

g = 94.6162 · 10−5 ± 8.288 · 10−6, ∆g
g

= (0.8759%)

∆ν := 100 MHz g/n = (86.3± 3.1) MHz
Qload := ν0

∆ν
= 4.08 · 106 ± 1.5 · 105

F := ∆νFSR

∆ν
= 6.15 · 103 ± 2.2 · 102

Figure 16: File 57
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g = 118.403 · 10−5 ± 8.07 · 10−6, ∆g
g

= (0.6816%)

∆ν := 100 MHz g/n = (108± 3.7) MHz
Qload := ν0

∆ν
= 3.26 · 106 ± 1.1 · 105

F := ∆νFSR

∆ν
= 4.92 · 103 ± 1.7 · 102

Figure 17: File 58

g = 122.676 · 10−5 ± 8.022 · 10−6, ∆g
g

= (0.6539%)

∆ν := 100 MHz g/n = (112± 3.8) MHz
Qload := ν0

∆ν
= 3.15 · 106 ± 1.1 · 105

F := ∆νFSR

∆ν
= 4.75 · 103 ± 1.6 · 102

Figure 18: File 59
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g = 177.882 · 10−5 ± 8.509 · 10−6, ∆g
g

= (0.4784%)

∆ν := 100 MHz g/n = (162± 5.2) MHz
Qload := ν0

∆ν
= 2.17 · 106 ± 7 · 104

F := ∆νFSR

∆ν
= 3.27 · 103 ± 1.1 · 102

Figure 19: File 60

g = 264.126 · 10−5 ± 9.639 · 10−6, ∆g
g

= (0.3649%)

∆ν := 100 MHz g/n = (241± 7.5) MHz
Qload := ν0

∆ν
= 1.46 · 106 ± 4.5 · 104

F := ∆νFSR

∆ν
= 2.2 · 103 ± 68

Figure 20: File 61
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g = 411.414 · 10−5 ± 1.996 · 10−5, ∆g
g

= (0.485%)

∆ν := 100 MHz g/n = (375± 12) MHz
Qload := ν0

∆ν
= 9.38 · 105 ± 3 · 104

F := ∆νFSR

∆ν
= 1.41 · 103 ± 46

Figure 21: File 62

g = 738.194 · 10−5 ± 6.394 · 10−5, ∆g
g

= (0.8662%)

∆ν := 100 MHz g/n = (674± 24) MHz
Qload := ν0

∆ν
= 5.23 · 105 ± 1.9 · 104

F := ∆νFSR

∆ν
= 789± 28

Figure 22: File 63
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