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0. Introduction 
 

0.0. Parts of this apparatus 

 
 

Figure 0.0 shows the major components of the experiment. If anything displayed here is 

missing or not functional, please contact your advisor immediately. 

   

 
 Figure 0.0:  The parts of Noise Fundamentals apparatus 

 
The main two parts are the high level electronics in a wooden case (3) and the low level 

electronics in a steel and aluminum case. As you see there is also a low temperature setup, 

which you will need for the final experiment of this practicum.  This setup includes a 

variable-temperature sample probe, a Dewar vessel, the Dewar support and a breakout box. 

In addition there are two plastic parts boxes containing various tools and spare parts (not 

shown), which you might need for the optional part. 

The measurements are mostly performed by using the provided digital voltmeter and the 

oscilloscope, which this experiment shares with the NMR setup. (You might have to take it 

from there, please be careful. In case there are any uncertainties, please contact your advisor.) 
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0.2. Definition, kinds, uses of noise 

 

Just as a weed is an unwanted plant, a noise, ordinarily speaking, is an unwanted sound.  In 

the fields of physics, electrical engineering, and many other places, we extend the definition 

of 'noise' beyond acoustics to the general field of information.  Since almost any signal that's 

a function of time can be translated into a voltage, we will often use the concept of a voltage 

signal.  We'll call it a 'noisy signal' if, in addition to the voltage we expect or wish to see, 

there is unwanted, typically (but not always) a randomly-fluctuating, voltage. Surprisingly, 

the noise signal is sometimes not only wanted, but is the essence of the measurement. 
 

There are several kinds of noise.  One of them is 'interference', which is the presence of an 

unwanted signal, added to the desired signal.  It's easy to imagine that your neighbor's 

electronic apparatus is polluting your TV or radio signal with some sort of interference. The 

kind of interference students are likely to encounter in these experiments probably comes 

from three sources: electrostatic coupling to the apparatus from fluorescent lights in the 

laboratory, electromagnetic coupling due to nearby transformers or motors, and vibrational 

coupling due to microphonic components within the unit. 
  
Another source of noise we will call 'technical noise' since it is the noise generated by the 

technique of the investigation, or that gets into the circuits due to faulty experimental 

techniques. For example, a failure to tighten the cover on the preamplifier section, or a poor 

electrical connection to the first-stage op-amp, can add extraneous noise to the signal path. 
 

Of greatest interest to us is 'fundamental noise', noise that is intrinsic and inevitable because 

of the physical nature of an apparatus.  We'll observe noise sources that arise from the 

Second Law of Thermodynamics, and from the quantization of electrical charge. Physicists 

and electrical engineers know these as Johnson and shot noise (“Schrotrauschen”) 

respectively.  Noise sources like this display the characteristics of non-periodic, 

unpredictable, random waveforms, but nevertheless conforming, in their statistical properties, 

to universal laws. 
 

Fundamental noise is especially worthy of study, for at least two reasons.  The first reason is 

that fundamental noise presents us with a physics-based limit on the degree to which we can 

measure in a given experiment.  In many cases in research and technology, it often defines 

what is possible within the limits of physical law.  In particular, fundamental noise can and 

does set limits to the rate of data-transfer in a host of contexts in communication.  
 

The second reason we care about noise is that it becomes possible to use noise to measure the 

values of some fundamental constants. Boltzmann's constant kB can be determined from the 

voltage or Johnson noise of resistors; and the magnitude of the charge on the electron, e, can 

be determined from the current or shot noise of a photocurrent. 
 

But measurement of 'fundamental noise' has its experimental challenges. There is a saying 

about noise measurements:  'you're either measuring too much or too little signal'. You will 

understand this quip better after you have had some experience with these measurements. 

Our advice here is to read both the manual and some of the references and do your 

measurements carefully. But most of all, have fun! 
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0.3. Measurement Tasks & Protocol 
 

During this practicum you will perform a number of measurements that should be recorded in 

a protocol.  Please give comprehendible plots of the following measurements: 

 

 Recording of Noise sample  

 Variation of Noise (table) 

 Dependence on Resistance (for all 3 internal resistors, external: optional) 

 Dependence on bandwidth (choose twenty or more combinations) 

 Calculation of Boltzmann’s constant 

 Interpolation of absolute zero  

 

It is not necessary to give any derivation of the theory, but the plots should be interpreted and 

explained.  In case additional questions are asked in the text, try to answer them. Give (where 

applicable) an estimate of the errors and where they come from.  
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1. Johnson noise at room temperature 

 
1.0 The reasons for Johnson noise, and its predicted size 
 

Everyone capable of a little electrical engineering and physics knows Ohm’s law V = i R, 

which really says that there's a potential difference V across any resistor R which has a 

current i passing through it.  This of course predicts a V of zero for a resistor with no 

current.  But for deep reasons, any actual resistor at any temperature above absolute zero, 

will display a 'noise voltage' VJ (t) across its terminals, a potential difference that has all 

the character of an internal (a.c.) emf (electromotive force) built into the resistor.  The 

emf which the resistor generates is called 'Johnson noise', and it arises because of the 

deep thermodynamic connection between dissipation (which any resistor surely has) and 

fluctuations (which here show up as a fluctuating emf).  The size of this emf is also 

predicted by fundamental theory, and it should not surprise you to learn that VJ (t) is, on 

average, zero.  But VJ (t) exhibits fluctuations, positive and negative, about that average 

value of zero.  To quantify these, we form the (always-positive) square of VJ (t), and 

time-average that, giving a 'mean square' voltage which we denote as < VJ
2 

(t) >.  The 

predicted value for < VJ
2 

(t) > was first deduced by Nyquist, following Johnson's 

empirical discovery of the noise, and it's given by the expression 

 

< VJ
2 

(t) > = 4 kB R T f. 

 

Here kB is Boltzmann's constant, T is the (absolute) temperature of the resistor, and f is 

the novel factor -- it is the 'bandwidth' used in the measurement electronics. 

 

The involvement of bandwidth f is a first hint that 'noise' is quite distinct from 'signal'.  

Everyone starts with 'd.c. signals', which have nothing but a sign and a value, in Volts.  

Then there are 'a.c. signals', which have a magnitude (perhaps specified by amplitude, or 

rms value, or peak-to-peak excursion) but also a frequency, or a mixture of frequencies.  

But it is the essence of fundamental noise that it contains, or is composed of, all 

frequencies.  In fact, the amount of energy we can get out of a 'noise source' depends on 

the range of frequencies to which we arrange to be sensitive, and this is the reason for the 

inclusion of the bandwidth-factor f in the expression above. 

 

How large a Johnson-noise voltage should we expect from a typical resistor?  Let's 

calculate this mean-square voltage for a 100-k  resistor at room temperature. Suppose 

that our electronics for detecting and measuring VJ (t) are fully sensitive to all frequencies 

from 0 to 100 kHz, but entirely insensitive to higher frequencies. Then: 

 

        T = 22
 o
C = 295 K 

         kB = 1.38 x 10
-23

 J/K (textbook value) 

        f  = 100 kHz  = 10
5
 Hz 

 

           <VJ
2
(t)> = 4 (1.38 x 10

-23
 J/K) (295 K) (10

5
 ) (10

5
 Hz) 

    = (1.63 x 10
-20

 J) (10
5
 V/A) (10

5
 /s) 

    = 1.63 x 10
-10

 V
2
. 
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Not everyone is familiar with the curious unit of the square-of-a-Volt, so we often take 

the square root of this mean-square noise voltage, to give a 'root-mean-square' or 'rms' 

measure of the noise voltage,  
 

VJ(rms)  <VJ
2
(t)> 

1/2
 = 1.28 x 10

-5
 V = 12.8 V. 

 

So if we have a room-temperature 100-k  resistor simply hooked up to an ideal 

voltmeter, and if that voltmeter responds to all (but only) frequencies under 100 kHz, 

then the voltmeter's instantaneous reading will not be zero volts, but instead will fluctuate 

(rapidly: in this case, on a microsecond time scale) around zero, with typical excursions 

of order 10 V.  We further assert that this is an actual emf intrinsic to the resistor, and 

it will still be present, though typically unwanted, in addition to any iR-drop that the 

resistor may exhibit.  It follows that measurement of any iR-drop to microVolt precision 

in such a case would require thinking about this effect. 

 

There are many textbook derivations of Nyquist's prediction, and the best of them 

emphasize the connection to thermodynamics and to blackbody radiation.  Here's a 

'thought experiment' to help you see that some sort of Johnson noise must exist.  First 

imagine a cubic meter of iron at room temperature and another cubic meter of cold iron 

(say, at temperature T = 4 K), spaced 10 meters apart in empty space.  (If you like, think 

of them as located at the two focal points of a large evacuated ellipsoidal reflecting cavity 

which surrounds them both, and isolates them from the external universe.)  It should be 

clear to you that each iron block is giving off blackbody radiation, with a range of 

frequencies and in all directions -- but that the warm block is giving off lots more.  Since 

the blackbody radiation of each block will run into the other block, there will be a net 

flow of (radiant) energy from the warmer block to the colder one, and their temperatures 

will therefore start to equilibrate. 

 

Now imagine a 50-  resistor at room temperature, connected to nothing but a lossless 

coaxial cable of 50-  impedance; and imagine there's another 50-  resistor, but down in 

a Dewar at T = 4 K, connected to the far end of this cable.  Even if there is no thermal 

conductivity in the cable, there is still electrical conductivity.  It's the 'Johnson emf' in 

each resistor which still acts like a black-body source, here generating travelling waves of 

(confined) radiation along the one-dimensional cable structure, and that 'radiation' is 

caught and dissipated in the far end's resistor.  This is the mechanism by which the two 

resistors will tend toward thermal equilibrium, as the hotter resistor will experience a net 

outflow, and the colder a net inflow, of electrical energy. 
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1.1 'Seeing' Johnson noise 
 

This exercise will let you see, directly on an oscilloscope, a time-dependent waveform 

which can be traced all the way back to the Johnson noise generated in a resistor.  

 

You need to plug, into your 100-to-240-V outlet, the line cord of the the universal power 

supply which supplies power to the high-level electronics (HLE).  You should see a green 

LED on the transformer unit light up.  Now connect the output of this supply to the 

receptacle on the back of the HLE.  You should see a green LED on the front panel of the 

HLE light up.  (Note there is no power switch in the HLE box; instead, it gets powered up 

as soon as you establish the power-supply connections.)  Now find the power cable 

emerging from the LLE box, and plug it into the connector on the front panel of the HLE 

box.  You should see a green LED light up on the front panel of the LLE.  Once you have 

three green LEDs lit, everything in your system is being powered. 

 

Set the switch to select a 'source resistor' of Rin = 100 k   in the pre-amplifier module 

installed in the LLE box.  This resistor is connected only to the high-impedance input of 

the first stage of amplification in the pre-amp. That first stage is wired to give a 'gain', or 

amplification factor, of 6.00, provided you set the feedback resistor, Rf, to its 1-k  

setting.  (The feedback capacitance Cf is not connected in the default mode, so its setting 

is irrelevant.)  Read the graphics on the panel of the pre-amp to see that there is an 

additional amplification stage, with gain 100, following this first stage.  Now you can 

connect the pre-amp's output, by a coaxial cable, to an oscilloscope, to see if there is any 

signal present.  Use a rather sensitive vertical scale on your 'scope (of perhaps 10 

mV/division sensitivity), a sweep speed of 5 s/div on the horizontal axis, and trigger 

near zero volts. 

 

Below are the schematic, and the wiring, diagrams of the circuit you're using. 

 

+
-

R
F
 = 1 kOhm200 Ohms

R
IN

  
                          Fig 1.1a:  Johnson noise preamplifier schematic 
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The wiring diagram for this configuration is shown in Figure 1.1b.  The connections 

indicated in grey-scale printing are those you need to check, or establish.  (By contrast, 

connections shown in thin solid lines are already established for you on the printed-

circuit boards.) 
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Fig. 1.1b:  Wiring diagram of the default condition of the interior of the low-level electronics. 

 

 

The signals you've seen emerging from the pre-amp are rather small.  So next use a BNC 

cable to convey the pre-amp output to the HLE box instead, where you can filter and 

amplify the still-small noise signals. If you use the settings and the cabling shown in 

Fig.1.1c, you will be selecting a frequency band, extending from about 100 Hz to about 

100 kHz, to pass along to the main amplification stages.  The first filter shown has its 

high-pass output in use; you may think of this as passing frequencies on the high side of 

100 Hz, or equivalently as blocking frequencies below 100 Hz.  The second stage is used 

as a low-pass filter, here passing all frequencies on the low side a chosen 100 kHz.  So 

after the output of the two filters, you have Johnson noise, pre-amplified by factor 600., 

and then filtered to pass only the 0.1 - 100 kHz frequency band.  
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Fig. 1.1c:  Cabling diagram for first use of the high-level electronics. 

 (left) Filter:  selector to .1k (for 0.1 kHz), switch to AC (for a.c. coupling) 

 (right) Filter:  selector to 100k (for 100 kHz), switch to AC (for a.c. coupling) 

 Gain Fine Adjust 30, toggle x1, toggle x10 

 

Notice the figure shows more cabling, now to amplify this signal by a further factor of 

300.  You achieve this by a setting of gain x1 and x10 at two toggle-switch settings, and a 

further gain of x30 on the rotary switch setting.  (Here too you can switch to AC for a.c. 

coupling at the input.)  Finally, at the output of this main amplifier, you'll have a signal 

large enough to see easily on a 'scope.  A view of it, using a 2 V/div vertical sensitivity, 

and a 10 s/div horizontal scale, is shown in Figure 1.1d. 

 

 
 

Fig. 1.1d:  Samples of amplified Johnson noise from a 100-k  resistor, using pre-amp gain 600, 

filtering to 0.1 - 100 kHz bandwidth, and main-amp gain 300.  Vertical scale 2 V/div, horizontal 

scale 10 s/div, triggering on positive-going zero-crossings. 
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To get a first, qualitative, indication that this 'noise signal' has something to do with the 

original source resistor at the front end of this pre-amp/filter/main-amp chain go back to 

the pre-amp, and change the source resistor from 100 k  to 10 k .  You should see the 

size of the noise signal on your 'scope change -- it should decrease, and by a factor of 

about three.   

 

For a first rough understanding of the size of these 'scope signals, consider our claimed 

13- V (rms measure, in the 0-100 kHz band) Johnson-noise signal emerging from a  

100-k  source resistor.  The pre-amp gain of 600 ought to raise this to about 8 mV (rms), 

and further main-amp gain of 300 ought to raise this to about 2.5 V (rms).  (The 

intervening filter stages enforce the limitation to the 0.1 – 100 kHz band, and they 

provide a gain very near 1.00 within that band.)  We'll see later a good way to measure 

the rms value of signals such as shown in Fig. 1.1d, but you can now see why those 

voltage excursions fall (mostly) in the 5-V range. 

 

If your signals differ dramatically from those shown here, something is amiss. (See 

Appendix A.6 for some suggestions about 'troubleshooting'.)  It's certainly possible for 

the signal you see to be smaller, say if you've made wrong connections or wrong settings.  

It's also possible for the signal to be 'too large', particularly if there are unwanted 

(interference) signals present.  (Appendix A.5 discusses interference, its possible sources, 

and cures.)  But the apparatus you're using, in the configuration you've set up, ought to be 

displaying a noise almost wholly due to nothing else than the Johnson noise of your 

source resistors.  It is the universality of Johnson noise that lets us be sure that your 

signals should match, in rms measure, those shown here, certainly to within a factor 

smaller than two! 
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1.2    Quantifying  Johnson noise 

 

If you've done section 1.1, you've seen a rapidly-fluctuating signal on an oscilloscope 

which we claim is due mostly to Johnson noise, and which you now want to quantify.  

The method we'll describe here executes quite directly, in analog electronics, the very 

operation built into the mean-square definition of noise.  You need one more cable to 

convey the filtered-and-amplified noise signal to the Multiplier module, configured as a 

'squarer' as shown in the Fig.1.2a.   Conduct the noise signal to the 'A' input, and choose 

the AxA on the toggle switch.  The multiplier circuit delivers at the MONITOR point, a 

real-time output voltage 
 

                           Vout(t) = [Vin(t)]
2
 / (10 V) , 

 

which still has dimensions Volts (due to the fixed 'scale factor' of 10 Volts in the 

denominator above).  Take a look at Vout(t) on your 'scope, and  notice that it is always 

positive, unlike your input noise signal Vin(t), which is as often negative as positive. 

 

 
Fig. 1.2a: Cabling diagram for using the multiplier as squarer. High-pass filter 0.1 kHz, a.c. 

coupling; Low-pass filter 100kHz, a.c .coupling; Gain 400, a.c. coupling ; multiplier AxA, a.c. 

coupling 

 

In fact, to persuade yourself that the squarer is working, use the XY-display capability on 

your 'scope. Convey the squarer's input Vin(t), both to the squarer and to the X-channel of 

your 'scope, and convey Vout(t) to the Y-channel, and have a look at a real-time XY-

display.  You should see a parabola emerge.  See to it that you understand the origin of 

your XY-coordinate system, and then try changing some things:  What are the right 

sensitivities to choose on the two axes?  What would happen to your parabola if you 

raised the gain in the main-amplifier module of the HLE?  Why does your data lie on a 

parabola, after all? 
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Now without the need for a further cable, the output of the squarer is already being sent 

internally to the Meter module of your HLE.  What this module does is to take the time-

average of Vout(t), averaged over a time interval you can select (by switch) to 1.0 second.  

This time average will not be zero, since Vout(t), though fluctuating, is always and only on 

the positive side of zero. (Recall that the multiplier's squaring function ensures that Vout(t) 

is proportional to the square of Vin(t).)  The meter will display that time-average, either 

on its 0-10 V or its 0-2 V scale.  We suggest the use of the 0-2 V scale, and also suggest 

you go back and change the main-amp gain until the meter reaches a value near mid-

scale, about 1 Volt on the 0-2 V scale. 

 

What can you infer from this?  Start with VJ(t), the actual instantaneous Johnson-noise 

voltage generated by the source resistor.  At the output of the pre-amp, you have a signal: 
 

                                     (6.00)(100.) 
 
VJ(t).  

 

After the filter stages, you have the 0.1-100 kHz bandwidth-selected, or filtered, part of 

this signal.  After the main amp, you have a signal 
 

                          G2  (600) 
 
VJ(t), 

 

where G2 is the main-amp gain, perhaps 300.  Then after the squarer, you have a signal 
 

                      [(300)  (600)  VJ(t)]
2
 / (10 V) . 

 

Finally, using the <...> brackets to indicate a time average, what you have displayed on 

your meter is the signal 

 

                  Vmeter = <VJ
2
(t)>  (600  300)

2
/(10 V) . 

 

From this result and the meter reading, you can work all the way backwards to find 

<VJ
2
(t)>, the mean-square voltage present (within your chosen bandwidth) across the 

source resistor. 

 

Now use a cable to carry this time-averaged positive voltage to a digital multimeter.  You 

should see a number consistent with your analog-meter indication, and you should see it 

fluctuate.  (The expected size, and speed, of the fluctuations are treated in Appendix 

A.12.)  Note that with the use of a 1-second time constant, you'll have to wait rather 

longer than one second for results to stabilize to any new value, especially if you're 

waiting for the 3rd or 4th digit of a multimeter display to settle down. Once the reading 

has settled, you'll notice the residual fluctuations, but go ahead and write down multiple 

readings from the multimeter, taking a new reading every second or so.  See if you can 

persuade yourself that the readings display fluctuations about a mean value, and compute 

that mean value.  It is connected, by a known chain of amplification and filtering, to the 

mean-square Johnson-noise voltage at the source. 
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1.3    Observing and Correcting for Amplifier Noise 

 

You've now seen how all-analog electronics can take you all the way from a Johnson-

noise source voltage VJ(t) to a time-averaged d.c. voltage which is a traceable measure of 

<VJ
2
(t)>.  This section teaches you how to  

 

a) make that measurement optimally, and 

b) correct that measurement for amplifier noise. 
 

a) The noise measurements you perform all depend on the linear operation of the 

amplifiers, and they (like all analog electronics) have only a finite range of output 

voltages over which they remain linear.  For the high level electronic amplifiers, that 

range is (-10 V, +10 V).  If you were to put a simple sinusoid through the amplifiers, you 

could use the full  10-V excursions .  But since you are amplifying noise, you have to 

ensure that even the rare large fluctuations of the noise stay within the 10-V 'span' of the 

amplifier.  In practice, a maximum average noise signal of 3 Volts (rms) is a safe choice. 

This should avoid serious distortion of the signal, called 'clipping', like that shown in 

Figure 1.3a. For an average noise signal of 3 Volts rms, an excursion beyond 10-V is so 

rare as not to spoil the accuracy of your measurement. 

 
  Figure 1.3a:  Clipped signal from HLE – notice the clipping level is near +12 Volts.  

 

Now if the rms measure of the signal at the A-input of the squarer, VA(t), is 3 V, then (by 

definition) its mean-square value is 
 

                          <VA
2
(t)> = (3 V)

2
 = 9 V

2
 , 

 

and under these circumstances, the squarer's MONITOR output will give 
 

                             Vsq(t) = [VA(t)]
2
/(10 V)  

 

so that the time-average at the OUTPUT will be 
 

              <Vsq(t)> = <VA
2
(t)>/(10 V) = (9 V

2
)/ (10 V) = 0.9 V . 

 

You could use a smaller rms size for the input VA(t), but you'd be getting an even smaller 

output from the squarer, and your readings might be affected by zero-offsets in the 

squarer's output.  (See Section 5.3 for details.) 
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So from here onwards, whenever you measure a noise voltage, you should check the 

main-amp output to see that it fits easily into the 10-V range.  If it exceeds these 

limits, reduce the gain.  And you should look at the squarer's output on the panel meter, 

to see a time-averaged output near, or a bit below, 1 Volt.  Again, if it's much larger, you 

want to reduce the gain, or if much smaller, raise the gain.  Whenever you do take a 

reading of the time-average of the squarer's output, be sure to record also the net gain 

you've used to attain that reading, since this is your ticket to tracing the meter reading 

back to the desired mean-square noise <VJ
2
(t)>. 

 

 

b) Now back to Johnson noise.  The problem you're now going to address is tracing 

noise back to a source, because here you have to consider the possibility that some of the 

noise you're seeing is not due to the Johnson noise of the of source resistor, but instead 

due to the amplifier chain which follows it.  Since this 'amplifier noise' is just as 

featureless and random as the resistor's Johnson noise, there's apparently no way to 

separate the two waveforms once they're added.  But there is a way to separate their 

effects, if we can assume that the amplifier noise does not depend on the source resistor's 

value.  Here's the demonstration: let VJ(t) be the instantaneous noise voltage from the 

source resistor, and let VN(t) be the instantaneous noise voltage apparently present at the 

input of the amplifier.  That is to say, VN(t) is a model for a noise emf which, applied to 

the input of an ideal noiseless amplifier, would match the noise actually observed at the 

output of the real amplifier, driven only by its internal noise. If the gain of the amplifier is 

G, its output will be 
 

                         Vout(t) = G [VJ(t) + VN(t)] , 
 

and the mean-square of this output will be 
 

                   <Vout
2
(t)> = G

2
 < [VJ(t) + VN(t)]

2  

 

              = G
2
{<VJ

2
(t)> + 2 <VJ(t)  VN(t)> + <VN

2
(t)>} . 

 

There's a 'cross term' in this expression, the time average of the product VJ(t)  VN(t), but 

this time average is zero.  The reason is that VJ(t) and VN(t) can be safely assumed to be 

uncorrelated, arising as they do from distinct physical mechanisms in two different 

objects.  So when VJ(t) happens to be positive, the amplifier noise VN(t) is just as likely to 

be negative as it is positive; thus the product of the two factors is also as likely to be 

negative as positive.  That's why the absence of correlation enforces a zero for the time-

average of the product.  But that fact leaves 
 

                  <Vout
2
(t)> = G

2
{<VJ

2
(t)> + 0 + <VN

2
(t)>} , 

 

which says that mean-square voltages from uncorrelated sources are simply additive.  

In particular, it gives us a way to measure the amplifier noise -- we just change 

temporarily to a configuration in which the Johnson-noise term in this sum is negligible.  

Theory says that a choice of R = 0 for source resistance would give <VJ
2
(t)> = 0, but in 

practice, it suffices to use the R = 1-  or 10-  settings for giving a <VJ
2
(t)> which is 

small enough that the result is a good measure of the amplifier noise, <VN
2
(t)> .  
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And once that latter value is measured, it can be assumed to be present, and unchanged, 

in any use of (the same configuration of) the amplifier.
1
 So for any source resistor Rin > 

10 , the amplifier noise contribution previously established can be subtracted off, 

leaving <VJ
2
(t)> isolated by itself. 

 

Here's a concrete illustration:  we have the values Rin = 1 , 10 , etc.  We pick the 0.1 - 

100 kHz bandwidth as before, and we pick gains to give good results at the squarer.  In a 

particular example, the time-averaged outputs of the squarer we find are the <Vsq> values 

below: 

 

Rin chosen gain G2    <Vsq> read <VJ
2
 + VN

2
> inferred  <VJ

2
 > derived 

                        (HLE) 

     1     1500     0.6353 V    7.843 x 10
-12

 V
2
 0.002 x 10

-12
 V

2
 

   10     1500     0.6372    7.867    0.026 

 100     1500     0.6516    8.044    0.203 

    1 k    1500     0.7911    9.767    1.926 

  10 k    1000     0.9801  27.225  19.384 

 

Now we expect, for the time-averaged output of the squarer, 
 

        <Vsq(t)> = <Vin
2
(t) > / (10 V) 

 

   = {(G1 G2)
2
 / (10 V)} <VJ

2
 +VN

2
> , 

 

so we can use the G1 = 600 and G2-as-listed values to compute the column with  

< VJ
2
 +VN

2
> values.  We can eyeball-extrapolate to the Rin  0 limit, and deduce a 

contribution of 7.841 x 10
-12

 V
2
 for <VN

2
> alone, the amplifier noise contribution (for this 

particular amplifier chip, at this particular bandwidth -- your number will vary!).  

Subtracting this contribution from all the entries gives the rightmost column for < VJ
2
 >, 

our estimate of the mean-square Johnson noise of the source resistor, corrected for the 

effects of amplifier noise.  Notice that the amplifier-noise corrections are large, even 

dominant, for small values of source resistance! You'll find (for the present choice of pre-

amp input stage) that Johnson noise surpasses amplifier noise only when the source 

resistance has risen to about 3 k . 

                                                 
1
 Under the assumption of negligible op-amp current noise, and no noise from external interference, both of 

which may depend on Rin. 



NF Rev ATI 1.2  13.09.2012 

 

1-12 

1.4 Johnson noise dependence on resistance 
 

The previous sections have taught you how to configure the pre-amp/filter/main-amp 

combination, and how to select a gain for optimal use of the squarer.  The results can also 

be corrected for amplifier noise, and traced back to an inferred mean-square measure of 

Johnson noise, < VJ
2 
(t) >, for any source resistor from R = 10  upwards. 

 

You should now investigate systematically the dependence of < VJ
2 

(t )> upon source 

resistance R.  To do so, you can use the R = 10  through 10 M  choices built into the 

pre-amp module.  (These internal source resistors have tolerances of 0.1% to 1 M , and 

1% thereafter.)   

 

In addition to the measurement using the fixed internal resistors, you can also measure 

arbitrary resistors. The selector switch gives you access to three more test positions, Aext, 

Bext, and Cext. You can open the case to populate these external positions with resistors as 

you please. Measurement of these resistors is optional, so you don’t need to do so in 

order to finish the practicum. If you want to do it, please contact your advisor before 

opening the panel.  
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Fig. 1.4:  Wiring diagram for adding components at the A, B, C, positions of the pre-amp's input. 

Note all input resistors have a common ground. 
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After your advisor gives the OK, you can change the resistors by doing as described in 

the following: First you can 'flip' the pre-amp panel, as illustrated in Figure 7.2a, to 

expose the back (component) side of the pre-amp's circuit board.  You can also find the 

pre-amp power switch (near the internal power-on red LED inside the low-level 

electronics), and turn OFF the pre-amp power before making any changes to the board.  

Now use the diagram below to find the screw-connect terminal strips, and find also the 

location of the two endpoints for the components you're putting into the A, B, and C 

positions. 

 

You can choose resistors of any value in the 20  to 5 M  range; you can even choose 

different kinds of resistors.  (Most resistors sold nowadays are of metal-film construction, 

but ask around for some carbon-composition or wirewound resistors -- and look up what 

kinds of resistors Johnson himself used.)  You can clearly use resistors of any power 

capability you like -- their internal Johnson-noise emf is not going to overheat them!  If 

you wish, you can have a comrade hide from you the resistance values, so you'll be 

measuring some actual unknowns.  Don't forget to turn the pre-amp power back ON 

before you re-flip the front panel and close up the box. 

 

Now you can take noise data for your own resistors, as well as for the built-in source 

resistors. If you didn’t build in external resistors restrict your measurements on the 

internal resistors. Once you have values for < VJ
2 

(t) >, each corrected for amplifier noise, 

you can plot those values as a function of R.  Since both axes will vary over many orders 

of magnitude, a log-log plot is appropriate.  The vertical axis has units of Volts-squared, 

the horizontal axis has units of Ohms.  Nyquist's theory predicts a first-power power-law 

dependence on resistance R, namely 
 

                         <VJ
2
(t)> = (4 kB T f) 

.
 R

1
 , 

 

and you might see this confirmed.  There will be deviations from this behavior at the 

high-R end of the plot, for reasons to be discussed in sections 1.5 and 2.2, and Appendix 

A.8. 

 

At the low-resistance end of the plot, you'll see the amplifier-noise-corrected values 

enable you to follow Johnson noise to a regime well below the apparent limit set by 

amplifier noise.  You'll be able to establish values of  <VJ
2
(t)> which are less than 1% of 

the amplifier noise <VN
2
(t)> that overlays them.  Of course, the corrected value of 

Johnson noise will be the difference between two nearly equal quantities, so the results 

will be subject to larger uncertainties than other data points.  
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1.5 Johnson noise dependence on bandwidth 
 

Thus far you've learned how to observe and quantify Johnson noise, and you've seen how 

to isolate its mean-square value from amplifier noise.  You've also seen its dependence on 

source resistance R.  But Nyquist's formula claims that <VJ
2
(t)> also depends on the 

bandwidth f; ie. on the range of frequencies to which your system is sensitive. 
2
 

 

So for now you should stay at room temperature, and stay at a fixed R-value; we suggest 

a starting value of Rin = 10 k .  The goal is to see how the choice of bandwidth matters.  

The method is to imagine a 'white noise spectrum', ie. noise power uniformly spread in 

frequency at its origin, but subsequently modified by the high-pass and low-pass filter 

sections as depicted below.
3
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Fig. 1.5a:  Representation (left) of the transmission of a high-pass filter, of corner frequency f1; 

(center) of a low-pass filter, of corner frequency f2;  (right) the combined effect of both filters. The 

graph's scales, horizontal and vertical, are all logarithmic. 

 

You have a range of choices for the 'lower corner' frequency f1 or high-pass filter setting, 

and a separate range of choices for the 'upper corner' frequency f2 or low-pass filter 

setting.  You might first think that the bandwidth f should be given by |f2 - f1|, which is a 

decent approximation, but subject to significant corrections. These so-called 'corrections' 

are discussed in great detail in Sections 2 and 5. But for now we present you with the 

generic corrections which are the result of a model calculation. The model of Section 2.2 

predicts the effective bandwidth f for each combination of f1 and f2, and gives the results 

shown in Table 1.5. 

                                                 
2
 The further prediction that Johnson noise depends on the resistor's temperature is tested in Chapter 4. 

 
3
 Section 2.0 teaches you how to get data of this form. 
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Table 1.5 Effective noise bandwidths, f, given in Hertz, computed for model filter responses 

 

 f2 = 0.33 kHz 1 kHz 3.3 kHz 10 kHz 33 kHz 100 kHz 

f1 = 10 Hz   355 1,100 3,654 11,096 36,643 111,061 

30 Hz   333 1,077 3,632 11,074 36,620 111,039 

100 Hz   258 1,000 3,554 10,996 36,543 110,961 

300 Hz   105   784 3,332 10,774 36,321 110,739 

1000 Hz       9   278 2,576  9,997 35,543 109,961 

3000 Hz       0.4    28 1,051  7,839 33,324 107,740 

 
These computed values are all subject to uncertainties of order 4%; (see Section 5.2 for details on how any 

of them can be more carefully calibrated).  They are all computed (by the methods of  Section 2.2)  for 

ideal filter responses, ignoring systematic effects.  Inclusion of those effects may raise values in the 

rightmost column by (3 1)%, and may raise values in the next-to-rightmost column by (1 1)%.  There are 

further corrections to effective noise bandwidths for large f2-values, in the case of large source resistance, 

due to capacitive effects -- see Appendix A.8. 

 

Your goal is to measure the mean-square Johnson noise of the resistor, <VJ
2
(t)>, for as 

many (f1, f2) combinations as you wish.  Recall that for each choice of filter settings, 

you'll want to adjust the gain so as to use the squarer optimally.  Recall that each mean-

square value you measure needs to be corrected for amplifier noise (measured at that 

bandwidth setting:  the amplifier-noise contribution to the mean-square depends, as does 

the Johnson-noise contribution, on the bandwidth you use.) 

 

You can plot your data for < VJ
2
(t )> in various ways: 

as a function of the f1-value used to obtain it; 

as a function of the f2-value used to obtain it; 

as a function of the difference |f2 - f1| of the f1- and f2-values used to obtain it; or 

as a function of the equivalent noise bandwidth, from the table above. 

Which plot is the most nearly linear?  Try again using log-log scales, to be able to see all 

you data points, spread as they are over many orders of magnitude. Pick the most 

informative plots to include into the protocol. 

 

If your plot is consistent with < VJ
2
(t) >  f, then the coefficient of this proportionality 

tells you a 'noise power spectral density', as you'll see in the next Section.  Its units are 

V
2
/Hz, and it's usually denoted by S. 
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1.6 Johnson noise density, and Boltzmann's constant 
 

Previous sections have shown you how to measure noise, and have tested its dependence 

on source resistance R and on measurement bandwidth f.  This section introduces you to 

noise density, and then relates your measured values, via Nyquist's formula, to 

Boltzmann's constant. 

 

If you have shown that measured mean-square noise <VJ
2
(t)> has a linear dependence on 

the bandwidth f used, you are entitled to infer the existence of a 'noise density' that's 

uniform in frequency.  Here's an analogy to mass density that should make this clear -- 

we'll use a one-dimensional example.  Suppose you have a string, of unknown 

composition, laid out on an x-axis, and that you can make clean cuts at arbitrary locations 

x1 and x2, and then weigh the piece of string you've extracted.  If (and only if) you find 

that the observed mass M is always proportional to |x2 - x1|, you may conclude the string 

is of uniform density.  You can also see that the quotient 
 

  (mass M) / |x2 - x1| 
 

gives the value for this density, given in units of mass per unit length. 

 

Similarly, if you've shown that mean-square noise <VJ
2
(t)> is always proportional to the 

bandwidth f you used to obtain it, then you can define the 'noise power density' 
 

   <VJ
2
(t)>  / f , 

 

in this case with units of Volts-squared per Hertz, or V
2
/Hz.  [Strictly speaking, this is not 

a power density -- but if a voltage V(t) is applied across a resistance R then the quotient 

V
2
(t)/R is a power.  So the quotient above is just a factor-of-R away from being an actual 

power density, with units Watts per Hertz.] 

 

Your data for a single source resistance R = 10 k  has given you a noise power density; 

you can go back to your data of Section 1.4 and convert that data to noise power density 

as well, to check the dependence-on-R of this density.  The motivation for all of this is 

that Nyquist's formula can be written as 

 

              noise density S = <VJ
2
(t)> / f = 4 kB T R . 

 

So you should plot all of your data thus far, and perhaps more data that you now take for 

various R- and f -values, to see if you can further establish the linear-in-R claim of the 

prediction above.  (In practice, you'll see deviations in the regime where R and/or f is 

large, for reasons discussed in Appendix A.8.) 

 

If you establish a regime of linear dependence on R, your plot, or fit, will give you a 

value for a slope, (4 kB T).  What units should it have? (Answer:  rise over run, so V
2
/Hz 

per Ohm -- and what unit is that?)  What value does it have?  Hardest:  what uncertainty 

can you assign to your value?  (Do so before you look up any 'book values', because the 

uncertainty intrinsic to your experiment is conceptually a matter quite separate from any 

discrepancy between your value and anyone else's.) 
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Finally, if you know you room's temperature T (and express it in absolute, ie. Kelvin, 

units), you can now conclude by finding a value (and uncertainty!) for Boltzmann's 

constant kB. 

 

What's the nature of kB?  At one level, it connects historical choices of temperature units 

to a 'common language' of energy units, via E = kB T.  At another level, kB is a 

'microscopic' version of the macroscopic gas constant R (here, not a resistance), as you 

can see by writing the ideal-gas law in two ways, 
 

                     p V = n R T and       p V = N kB T . 
 

The first form has n = (number of moles of gas), and that gives to R the units of Joules 

per (mole Kelvin).  The second form has N = (number of molecules of gas), and it gives 

to kB the units of Joules per (molecule Kelvin), or just J/K.  This double form of the law 

also makes it clear how R and kB have to be related:  since (n R) and (N kB) both give 

pV/T, we have 

                       n R = N kB , or R = (N / n) kB . 
 

But (N/n) is Avogadro's number NA, the number of molecules per mole.  Hence you 

expect the numbers to obey the relation 
 

 R  8.31 J/mole K = NA  kB  (6.02 x 10
23

 /mole) (1.38 x 10
-23

 J/K) . 
 

Check that claim.  Does this mean that electrons inside a resistor are acting like 

molecules in a gas, bouncing around between the resistor's two ends?  And is the 

Johnson-noise emf akin to the pressure fluctuations which kinetic theory predicts for a 

gas?  What's the connection to Brownian motion?  See if you can find any guidance on 

these conceptual points. 

 

. 
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2. Noise as a function of temperature 

 
2.1 Equipment, methods, and issues 
 

This section explains the use of the 'thermal probe' and its associated Dewar vessel. 

Together they make it possible to measure Johnson noise from a source resistor as a 

function of its temperature T.  The system is designed for use with liquid nitrogen (LN2) 

as a coolant, and an electrical heater allows exploration above that base temperature.  The 

probe is suited for use in the 77 K - 400 K range.  The lower end is set by the normal 

boiling point of LN2; the upper end (which is +127 C) is set by temperature limits of 

wires and components in the probe head, and is enforced by the limited power available 

to the heater. 

You can measure the room temperature values on your own. After that, please contact 

your advisor, who will provide you with the liquid nitrogen. 

 

The motivation for this temperature coverage is of course the theoretically-predicted  

(4 kBT R f) temperature dependence of the mean-square Johnson noise voltage.  Using 

the accessible temperature range, you'll be able to vary this quantity by a factor of 4 or 5.   

 

SAFETY WARNING: The Dewar supplied is made of un-silvered glass to help you see 

the liquid level inside.  Because it's made of glass, it will shatter if you drop it.  The 

disaster will be even more dangerous if the Dewar is full of LN2 when dropped.   

So: do NOT drop the Dewar, and use and store it only in the base built to hold it securely. 

 

SAFETY WARNING:  Liquid nitrogen is very cold, boiling at about -195 C.  It is 

dangerous to have it contact your skin, and even more dangerous to undergo skin contact 

with clothing soaked with LN2.  The hazard is not chemical, but physical. You can suffer 

frostbite, and permanent nerve and/or tissue damage, from the localized freezing that will 

occur. 

 

There is also a special electronics issue involved with the use of the probe.  The source 

resistors are now not built into the pre-amp module, but instead a few feet away. They are 

connected to the first stage of amplification by wires inside the low-level electronics box, 

and then by a coaxial cable over to, and down into, the probe.  We have succeeded in 

preserving the required electrical grounding and shielding of those remote resistors 

against external electrical interference; but the inevitable cost is much larger capacitance 

between the 'live wires' and the shields.  This capacitance (about 100 pF) has 

consequences on the bandwidth of the noise signals.  The Johnson noise is still spectrally 

'white' at its origin, but its spectrum is already modified by capacitive effects when it 

reaches the first amplification stage.  Some solutions to the problem will be presented. 
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2.2 Two-temperature Johnson-noise measurement 
 

This section teaches you how to prepare your system for measuring Johnson noise in 

'remote resistors'.  It pre-supposes that you've worked through Chapter 7 and Sections 

1.1-1.5 on how to measure Johnson noise in 'local resistors'.  The goal is to measure 

Johnson noise at two distinct temperatures:  ambient and liquid-nitrogen. 

 

The first thing you'll need to do is to confirm the installation of resistors into the probe.  

The unit is shipped with resistors RA = 10 , RB = 10 k , and RC = 100 k  already 

installed, as you can see in the Figure 4.2a: 
 

 
Fig. 4.2a:  The interior of the temperature probe, showing the A, B, and C positions of source 

resistors. 

 

Notice that to get this view, you have to loosen four screws, and remove four more, to 

slide away the shielding sleeve on the probe.  The resistors' 'hot ends' are on the circuit 

board, and the ends near the copper flange are grounded.  Once you've confirmed the 

resistors are present, you need to close up the shielding sleeve again. 

 

 
 

Figure 4.2b The 'breakout box' 
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To facilitate checking that all the components are properly connected inside the variable 

temperature probe, we have included with the unit a 'breakout box' shown in Figure 4.2b. 

This box connects to the variable-temperature probe and has 8 test points, one for each 

wire lead from the components in the probe to the connector. Points RA, RB, RC, and GND 

can be used to test the resistors with an ohmmeter, since all three resistors have a 

common ground. (Note that the 10  resistor will likely read 12  because of the 

resistance of the leads.) 

 

The heater leads are present at H1 and H2 which measure about 75 . The diode 

thermometer should be checked with a multimeter (on the diode-testing scale). It should 

read about half a volt, if the positive lead is connecter to either D1 or D2 . Note that there 

is only one diode thermometer connected at the factory and both wires D1 and D2 are 

connected to it. 

 

Internal wiring brings three 'live wires' from the three source resistors to a junction box 

atop the probe, and then via a cable to a connector for the Temperature module of your 

low-level electronics.  Before you connect the probe to that module, open up the low-

level electronics (by the familiar flip operation) to see what connections you need to 

make between the Temperature module and the Pre-amp module.  The Figure 4.2c shows 

the necessary connections.  In particular, you need three wires connecting the RA, RB, and 

RC resistors to the Aext, Bext, and Cext positions in the pre-amp.  The 'other wire' of each of 

the three resistors is already grounded to the body of the probe, as the resistors are both 

thermally and electrically connected to the copper block through the terminal post .   
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Fig. 4.2c:  Wiring diagram of the interior of the low-level electronics, to bring the A, B, and C 

remote resistors to the Aext, Bext, and Cext positions of the Rin selector, and to connect the 

temperature transducer and heater. 

 

Also shown in the diagram are the connections you'll want to make for the temperature 

transducer, and the heater, in the probe.  You'll need those devices in future sections. 

Re-flip the low-level electronics into its enclosure, confirm its power is ON, close up the 

box, connect the probe cable to the thermal module, and install the probe as shown in the 

photo below.  Note that the Dewar is absent, and the whole probe is at ambient 

temperature. 
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Fig. 4.2d:  A mounting for the Dewar support, and temperature probe (with Dewar vessel 

removed). 

 

Now you should be able to measure (room-temperature) Johnson noise from three remote 

resistors, just by using the A, B, C, positions of the source-selector (Rin) switch on the 

pre-amp.  Other positions of this switch make available the noise from a set of 'local' 

resistors, including values of 10 , 10 k , and 100 k . 

 

For initial measurements, we suggest a bandwidth of about 10 kHz (set perhaps by using 

a 1-kHz high-pass, and a 10 kHz low-pass, filter).  As usual, you'll need to recall that the 

standard gain is G1 = 600 in the pre-amp (if that's in its default condition), and you'll need 

to use a suitable gain G2 in the main-amp to get the squarer to operate in its optimal 

regime.  As previously, here too you'll need to use the 10-  source resistor as a way to 

get the amplifier-noise contribution, which needs to be subtracted from the mean-square 

noise measurements. 

 

It is important that you take data from both local and remote 10 k  and 100 k  source 

resistors, and also that you try some different bandwidths.  Because of the effects of 

probe capacitance, it is to be expected that the values of <VJ
2
(t)> you infer will be smaller 

for the remote, as compared to the local, resistors.  The deficiency will be larger for the 
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larger source resistance, and a broader bandwidth.  To see why this is expected, compute 

an RC time-constant for choices of R of 10 k  and 100 k , now assuming C  100 pF for 

connections to the probe resistors.  Then compute a corner frequency of the undesired 

one-pole low-pass filter that results, from fc = 1 / (2  ).  See Appendix A.8 for how to 

handle the consequences. 

 

Use these (all room-temperature) results to decide on a measurement strategy that you'll 

use when the probe is not at room temperature.  When you've worked that out, it is finally 

time to cool your probe.  The photo above suggests how a (warm, and empty) Dewar can 

be slid into place, mounted into its movable base, and used to surround the probe.  You 

can lower that base and the Dewar together and pour about 1 liter of LN2 into the Dewar. 

[Go back to Section 4.1 and re-read the SAFETY WARNINGS we've posted there -- 

liquid nitrogen is a tool, or a hazard, but not a toy.]  Wait for the boiling to subside, slide 

the black foam insulating cover down onto the Dewar's mouth, and now use the clamp on 

the Dewar's base to raise the Dewar until the probe makes contact with the LN2.  Here, as 

in general, the probe's sample chamber should end up at about the mid-height in the 

Dewar, and (for purposes of this experiment, exceptionally) also to end up with its copper 

bottom plate immersed in the liquid.  (In later sections, you'll want only the brass 'cold-

finger' on the bottom of the probe to be immersed.)  The purpose is to ensure that your 

resistors really are at the temperature of your boiling LN2. 

 

When all the extra boiling has settled down, you can repeat your noise measurements, 

using both the local and the remote resistors, and using the protocol you've established.  

You may need to change the gain G2 to keep the squarer in its optimal regime. 

 

There's one more necessary measurement task.  Your 'remote resistors' are of 1% 

tolerance, but that does not guarantee that their 77-K resistance matches their nominal 

value to this accuracy.  So you'll want to check their 'cold resistance', ie. their R-values 

when they're immersed in LN2.  To get access to their electrical properties, we've 

supplied a 'breakout box', to which you can attach the cable of the probe, to get 

connections with all the items down inside it (see Appendix A.1).  For remote resistors 

immersed in freely-boiling LN2, you can not only be pretty sure of their temperature, you 

can also be quite confident that the diagnostic currents used by an ordinary ohmmeter 

will not warm the resistors significantly, as you measure their values. 

 

Here's a final note -- you might get to this point, and for the first time have a cold probe 

immersed in leftover LN2.  Here are some suggestions for what to do at the end of a day's 

experimentation. 

 

When you're done with your work, it might be a good idea to lower the Dewar's base, 

remove the Dewar, dispose of the surplus LN2 by your locally acceptable method, and lay 

the Dewar down on its side to warm up.  (Why is this better than leaving it standing 

vertically?  If you do lay it down, do NOT let it roll away to its doom.)  This removal will 

leave a cold probe in the open air, and you do NOT want to touch it -- contact with cold 

metal can lead to immediate frostbite, as well as the dreaded 'pump-handle effect'.  

Instead, leave the probe to hang in ambient air, and warm up spontaneously.  If you're in 

a hurry, or if condensation of water onto the chilly probe is a problem, leave it in open 
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air, with the heater running, perhaps set to 5 or 6 turns on the dial.  Then it will warm and 

eventually equilibrate to a safe-to-touch temperature, yet far enough above ambient 

temperature to ensure that it dries out properly. 

 

 

Historical insight:  Once you have data of the sort acquired above, here's one use you can 

make of your ambient-temperature and LN2-temperature values for <VJ
2
(t)>.  Put yourself 

back into the era of the Centigrade scale of temperature, on which ice melted at 0 C and 

water boiled at 100 C, by definition.  On such a scale, your ambient temperature might 

be 22 C, and your LN2 temperature might be -195 C (find an old reference which 

quotes you this value -- how do you suppose that it was established?).  Now plot your two 

<VJ
2
(t)> points as a function of the Centigrade temperatures at which they were 

measured.  You have only two points, so of course you can fit a line to the two points.  

The pay-off is to find the x-axis intercept of this line, as the extrapolated low-temperature 

point at which Johnson noise vanishes. 

 

What you're doing is 'locating absolute zero' according to a noise-based measurement.  It 

is a non-trivial technical, and intellectual, challenge to test whether Johnson noise 

extrapolates to zero at the same temperature at which the pressure of an ideal gas 

extrapolates to zero.  Success in such tests suggests that the Kelvin scale is not just 

absolute, but also physics-wide.  From a modern point of view, we depend on such a 

result to enable us to claim that the T-variable which appears in the Johnson-noise 

equation really is the absolute temperature, ie. the temperature measured relative to the 

absolute zero which is established by procedures such as these. 

 



 
 
 
 

 

Appendices 
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Appendix A.1. Technical specifications  
 

Low-level Electronics: 

 

 Pre-amplifier module: 

  First stage is user-configurable (see Appendix A.4.) 

  As shipped, first stage is 

   FET-input operational amplifier, non-inverting mode 

   gain (using Rf = 1. k ) is (1 + Rf /200. ) = 6.00 

   -3 dB bandwidth > 1.0 MHz 

   input impedance > 100 M  

 

  Next stage are fixed-configuration 

   gain 100. 

   -3 dB bandwidth > 1.6 MHz 

 

 Temperature module 

  Current source 

   accuracy <1%, 10 nA to 1 mA settings 

  Transducer voltage buffer 

   gain 1.00 to <0.1% error, 2 mV d.c. offset 

  Heater power supply 

   0 - 25 V (for floating loads), 330 mA current capability 

 

 Signal Attenuator 

  input impedance:   variable, 100  to 10 k  

  output impedance:   10  (for use driving Zin = 1 k  stages) 

     or 10  less 1% (for driving Zin  10 k  stages) 

  -3 dB bandwidth > 10 MHz 

 

 Bipolar Power Supplies 

  output:  ( ) 10 mV to 11 Volts 

  noise:  < 5 nV/ Hz, typically < 2 nV/ Hz 

  current capability:  250 mA maximum 
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High-level Electronics: 

 

 Filter sections 

  state-variable 2-pole Butterworth design 

  input impedance 10 k  
 

 Main amplifier 

  two stages, of gain x1 or x10 selectable 

one stage, gain variable from x10 to x100 

  -3 dB bandwidth > 1.4 MHz 

  slew rate  20 V/ s 

  input impedance 1 k  
 

 Multiplier 

  scaling factor for output:  Vout = VA VB /(10.0 V) 

  input impedances of A and B channels:  50 k  

  d.c. offset:  under  10 mV 
 

 Output stage 

  hard-wired d.c. coupling to output of multiplier 

  two successive (buffered) stages of 1-pole, low-pass filters 
 

 (back panel) Noise Calibrator 

  output level  212  2 mV, rms measure 

  noise power is located >99% in 0 < f < 32 kHz range 

  spectral density uniform to  2 % in 0 < f < 32 kHz range 
 

 

The 'Break-out Box' for the Thermal Probe: 

 

In normal operation, the cable from the Thermal Probe into the Temperature-Control 

module connects all the devices in the probe to circuits in the module.  It does so in a 

shielded, all-grounded, low-noise environment.  But there are times when you want 

ordinary access to connections in the probe -- for example, if you want to use an 

ohmmeter to diagnose the resistance (at ambient, or at LN2, temperatures) of the resistors 

mounted in the probe.  To do that, you can disconnect the Probe's cable from the 

Temperature-Control module, and connect it instead to the plastic breakout box.  Now 

you won't have full shielding, but you will have test-probe access to wires: 

GND labels ground, ie. the shell and body of the probe, including the 

copper fin at its bottom 

RA, RB, RC label the three source resistors' live ends (each has its other end 

grounded) 

D1, D2 label the two wires from the temperature-monitoring transdiode 

(see Section 4.3); this transistor has its collector and base leads 

grounded, so the 'live wires' D1 and D2 connect to the emitter  

H1, H2 label the two ends of the 75-  heater on the lower fin of the probe; 

this resistor has neither end grounded 
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Appendix A.2.  The matter of a.c. or d.c. coupling 

 
Real amplifiers are subject to 'd.c. offsets', such that a potential difference of zero at the 

input can still lead to a non-zero steady d.c. value at the output.  Because the overall gain 

of the Noise Fundamentals system can be as high as (600) x (10
4
) = 6 x 10

6
, even an 

effective 1 V offset at the pre-amplifier's input stage would lead to a full 6-Volt offset at 

the main amplifier's output.  The amplified noise voltages would be lying atop that d.c. 

offset, and this would create unacceptable errors.  So at many stages of the electronic 

signal chain, there is the option to use a.c. coupling between the stages. 

 

Every a.c.-coupled connection (including that selection at the input of test instruments) is 

actually a high-pass filter, with a corner frequency typically located at 10 Hz or so.  Thus 

the d.c. component of any signal is entirely blocked, and high-frequency a.c. signals are 

entirely passed, by the filter.  But a.c. signals of frequencies below 10 Hz can be 

considerably attenuated, as well as phase-shifted, by the filter in question.  This 

attenuation matters if the study of low-frequency noise is of interest to you. 

 

What follows is a description of the a.c. vs. d.c. coupling options, stage by stage, in the 

Noise Fundamentals signal path. 

 

The pre-amplifier's first stage is always d.c. coupled, as that's a necessity in shot-noise 

measurements.  A MONITOR output allows a view of the d.c. output level of the first 

stage; any a.c. signal or noise is lying super-imposed on that d.c. level. 
 

The gain-100 stage in the pre-amp can be a.c.- or d.c.-coupled to the first stage's output.  

As shipped, the coupling is a.c., with a high-pass corner at frequency 16 Hz.  The change 

to d.c. coupling can be made via a moveable jumper on the printed-circuit board inside 

the pre-amp. 

 

 
Fig. A.2a:  How to select a.c. vs. d.c. coupling between the input stage,  

                   and the gain-of-100 stage, of the pre-amp. 
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In the high-level electronics, the two filter sections can be a.c.- or d.c.-coupled by front-

panel switches.  In the a.c.-coupled mode, there's a high-pass corner at frequency 1.6 Hz. 

In the main-amplifier section, the input can be a.c.- or d.c.-coupled by front-panel switch.  

In the a.c.-coupled mode, there's a high-pass corner at frequency 16 Hz. 

 

The multiplier's inputs can both be grounded, or configured with a.c. or d.c. coupling.  In 

the a.c.-coupled mode, there's a high-pass corner at frequency 1.0 Hz. 

 

The output stage is internally connected, by d.c. coupling, to the multiplier's output, and 

its averaging action is optimized for accuracy all the way down to d.c. 

 

The Noise Calibrator output is d.c. coupled, to preserve the flatness of its noise spectrum 

down near zero frequency.  As a result, there may be a milliVolt-level d.c. offset in its 

average value. 

 

Finally, a word about the consequences of a d.c. offset on an a.c. noise voltage going into 

the squarer.  Recall that in typical operation, gains are chosen so that the signal reaching 

the squarer has an rms measure of about 3 Volts.  Suppose that the actual signal entering 

the squarer is 

VA(t) = D + i Ai cos (2  fi t + i) , 
 

where here D represents the d.c. offset, and the sum is a Fourier representation of all the 

component frequencies in the signal (or noise).  Since the squarer gives output  
 

Vsq(t) = [VA(t)]
2
/(10 V), 

  
 the instantaneous output of the squarer contains lots of terms: 
 

 Vsq(t) = (10 V)
-1

 { D
2
 + i Ai

2
 cos

2
 (2  fi t + i)  

+ i D Ai cos (2  fi t + i) 

    + i,j Ai Aj cos (2  fi t + i) cos (2  fj t + j) }. 
 

Upon taking the time average, the terms in the last two lines average to zero, while the 

cosine-squared terms average to 1/2.  So what you observe as the time-averaged output is 
 

<Vsq(t)> = (10 V)
-1

 { D
2
 + i Ai

2
 (1/2) + 0 + 0 }. 

 

The result is that the expected and intended output, 
 

<Vsq(t)> = < [a.c. part of VA(t)]
2
 > / (10 V) , 

 

is polluted by an error of 
 

<Vsq(t)> = D
2
 / (10 V) . 

 

So if the output of the main amplifier has an offset of even 100 mV, lying underneath the 

typically 3-Volt (rms) noise signal, and if the squarer is used in its d.c.-coupled mode at 

the A-input, this error will be (0.1 V)
2
/(10 V) = 0.001 V, relative to an output due to the 

intended noise signal of (3 V)
2
 /(10 V) = 0.9 V.  
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This offset of 1 part in 900, or 0.1%, will not be caught or corrected by switching the 

input of the squarer to the ground (GND) position, since in this position the squarer does 

not get to see the d.c. component that might be present in the main-amp's output. 

 

The moral of this story:  unless you have reason or need to study noise below about 20 

Hz, use a.c. coupling throughout.  If you do use d.c. coupling at various places in the 

system, monitor the signal (being sure to use an oscilloscope set for d.c. coupling at its 

input!) at every point in the signal chain, to ensure 

 that nowhere is the d.c. level sufficient to saturate the next stage, and 

 that the d.c. average level underlying the input to the squarer is under 100 mV or 

thereabouts. 

 



NF Rev ATI 1.2  13.09.2012 

 

A-6 

Appendix A.3. Operational-amplifier circuits and noise 
 
This Section describes how the amplifier noise in operational amplifiers can be modeled, 

and goes on to discuss the implications for experimentation. 

 

We start with the open-loop model for a (bare) op-amp, with two inputs (called inverting 

and non-inverting, but labeled by - and + respectively): 

+
-

V
OUT

V
+

V
-

 
Fig. A.3a:  An operational amplifier without feedback, showing labeling of inputs. 

 

The noise-free model behavior is Vout = A (V+ - V-), where A is the (typically huge, but 

frequency-dependent) open-loop gain.  In this model, we neglect issues such as input 

offset and linearity limits. 

 

Suppose that this device is used in the voltage-follower mode, which would ordinarily 

give Vout = Vin.  Now we model the noise behavior of this amplifier.  We imagine a 

referred-to-input voltage noise density Vn as an actual broadband white-noise emf, 

functionally in series with one of the amplifier inputs; and we also imagine that the very 

real d.c. bias current emerging from both inputs has atop it a white noise current source, 

with current noise density in.  If the signal source is a resistor R, we have a circuit 

+
-

R

V
OUT

i
n

V
nV

R

 
Fig. A.3b:  An operational amplifier as voltage follower, showing model noise sources. 

 

The noise behavior of this circuit includes three terms: 

 amplifier voltage noise Vn is effectively applied to the non-inverting input, and (in 

this circuit) appears with gain (+)1 at the output. 

 the Johnson noise of the resistor VR , of noise power density 4 kB T R, is also 

applied to the non-inverting input, and also appears with gain (+)1 at the output. 
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 current noise in , which has nowhere to go but through resistor R, where it causes 

a voltage drop across R which acts just like a voltage noise signal. 
 

So the output has fluctuating voltages from three sources, presumed to be uncorrelated.  

As usual, the mean-square fluctuations of Vout simply add, to give 
 

<Vout
2
> = Vn

2
 f + 4 kB T R f + (in R)

2
 f . 

 

Thus the noise density at the output can be written as 
 

<Vout
2
> / f = Vn

2
 + 4 kB T · R + in

2
 · R

2 
. 

 

This is a quadratic function of R, and it is well imagined in a log-log plot vs. R.  For small 

source resistance R, the Vn
2
 term dominates; for large R, the in

2
 R

2 
term dominates.  These 

two terms make equal contributions when Vn
2
 = in

2
 R

2 
or at R = Vn/in.  But in addition to 

these R
0
 and R

2
 terms, there is an R

1
 contribution from Johnson noise, which can exceed 

the other two (amplifier-noise) terms in an intermediate-R region.  If you're trying to 

study Johnson noise, you'd like the 4 kB T R term to dominate both the Vn
2
 and  in

2
 R

2 

terms, at least in the neighborhood of this R-value. 
 

To be concrete, suppose that a generic (FET-input) op-amp is characterized by input 

voltage-noise density Vn = 10 nV/ Hz and input current noise density in = 10 fA/ Hz.  

The quotient Vn/in = 10 nV/10 fA = 10
-8

 V/10
-14

 A = 10
6
  defines the 'sweet spot' at the 

crossing of the R
0
 and R

2
 lines in the plot.  So at source resistance R = 1 M , the terms 

Vn
2
 and in

2
 R

2
 both contribute 10

-16
 V

2
/Hz to the noise power density.  That defines the 

amplifier-noise baseline, against which the Johnson noise has to compete.  For a 1 M  

source resistor, that gives a density 
 

4 kB T R ~ (1.6 x 10
-20

 J)(10
6
 ) ~ 1.6 x 10

-14
 V

2
/Hz = 160 x 10

-16
 V

2
/Hz. 

 

Sure enough, at (and around) this source impedance, Johnson noise dominates, 160-fold 

in power, over both voltage noise and current noise in the amplifier. 
 

The numbers for Vn and in picked above are typical for rather generic FET-input op-amps.  

But there are also op-amps whose front-end components are BJT-based, bipolar junction 

transistors.  Such devices can offer smaller voltage noise (eg. 3 nV/ Hz), but they display 

much larger current noise (eg. 1 pA/ Hz).  So a BJT-input op-amp would have its 'sweet 

spot' in the vicinity of a source resistance R = Vn/in = 3 nV/1 pA = 3 x 10
3
  = 3 k , 

where both terms contribute Vn
2
 = (in R)

2
 = 10

-17
 V

2
/Hz.  Relative to that amplifier-noise 

baseline, a 3-k  source resistor generates Johnson noise of a spectral power density  

(1.6 x 10
-20

 J)(3 x 10
3
 ) = 4.8 x 10

-17
 V

2
/Hz.  Again, there's a zone in which Johnson 

noise dominates over both forms of amplifier noise, though not by so large a factor as in 

the FET-based example.  Then again, the absolute amplifier noise density is lower. 
 

These examples teach us some lessons.  If we have a voltage source, it'll have some 

characteristic source impedance.  If that impedance is low (< 10
4
 ), then a BJT-input op-

amp is better suited; if that impedance is high (>10
5
 ), then an FET-input op-amp is 

better suited.  If (as in Johnson-noise experimental investigations) the source impedance 

has to vary over a wide range, then we have to understand that amplifier voltage noise, or 

current noise, might dominate over the source's Johnson noise in some regions of R-

space. 
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There's another lesson to be learned.  It might be that source resistance near 1 M  is best 

suited to the noise characteristics of a FET-input op-amp, but that does not tell us what 

bandwidth we can achieve.  Given even 10 pF of input capacitance, a 1-M  source 

impedance gives 2  R C ~ 10
-4

 s, and a 'corner frequency' of about 10
4
 Hz, 10 kHz, 

beyond which point the noise will roll off badly.  So the Johnson noise of a 1-M  resistor 

is indeed detectable, but an experimenter might be well advised to use only the 0-1 kHz 

bandwidth in which to detect it. 

 

There are finer points, too.  The values Vn and in provided by the manufacturer are 

typically quoted as densities near 1 kHz.  In practice, Vn tends to rise at lower frequencies 

(excess or 1/f voltage noise near d.c.).  In practice, in tends to rise, badly for FET-input op-

amps, at higher frequencies.  So in addition to the 'sweet spot' of source resistance, an 

amplifier can have a range or region in frequency space for which it offers its lowest-

noise performance.  The clever experimenter (using, for example, lock-in detection) will 

want to ensure that the signal being investigated has been arranged to lie near the optimal 

location on both the source-impedance and the signal-frequency axes. 

 

 

Defining 'noise temperature' and 'noise figure' of an amplifier 

 

The noise model above also allows us to define a figure-of-merit for an amplifier called 

the 'noise temperature' Tn.  We imagine that we have a sensing resistor R, at a temperature 

TR, and we seek to detect temperature changes in TR via Johnson-noise measurements.  

For our model amplifier, the noise at the amplifier's output will be the same as if we'd 

used an ideal (noiseless) amplifier, whose input was driven by a noise density 
 

S = <V
2
> / f = Vn

2
 + 4 kB TR · R + in

2
 · R

2 
. 

 

We've seen that the Johnson-noise term dominates the amplifier-noise terms most 

dramatically if we pick R's value at the 'sweet spot', choosing R = Vn/in.  In this case we 

get 

S = Vn
2
 + 4 kB TR · R + in

2
 · (Vn/in)

2 
= 2 Vn

2
 + 4 kB TR R . 

 

If we had the sense resistor at absolute zero (TR = 0), we'd get the first term only; it's the 

net amplifier-noise contribution.  Now we define the noise temperature of the amplifier, 

Tn, to be that resistor temperature at which the second (Johnson-noise) term would rise to 

be equal in value to the first term.  So by this definition, raising the resistor temperature 

from 0 to Tn will raise S from 2Vn
2 

to double this value.  This definition gives us 
 

2 Vn
2
 ≡ 4 kB Tn R , or Tn = (2 Vn

2
 ) / [4 kB R] = (Vn

2
 ) / [2 kB (Vn/in)] , 

 

so finally the amplifier noise temperature is given by 
 

Tn = (Vn in) / (2 kB) . 
 

To be concrete, we suppose that an FET-input op-amp will give us noise performance (at 

least in the vicinity of 1 kHz) characterized by Vn  8 nV/ Hz and in  6 fA/ Hz.  Then 

we get 

Vn in = (8 x 10
-9

 V/ Hz) (6 x 10
-15

 A/ Hz) = 48 x 10
-24

 W/Hz , 
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and we get an amplifier noise temperature of 
 

Tn = (Vn in) / (2 kB) = (48 x 10
-24

 W/Hz) / (2  1.38 x 10
-23

 J/K) = 1.7 K . 
 

This is remarkable performance for an amplifier whose physical temperature is 300 K. 

 

It does not follow that a T of 1.7 K is the smallest change in temperature that this 

resistor/amplifier combination can detect.  We've defined Tn such that (compared to a 

resistor at TR = 0), a resistor at T = Tn will double the value of measurable noise density S.  

Rather than such a 100% rise in noise density <V
 2

> / f, it is certainly possible to detect a 

10% or even a 1% increase in S.  The smallest temperature change you could detect by 

this system would ultimately depend on 

 a)  how stable your system would be against systematic variations, and 

b)  how long you were willing to wait, in averaging down the statistical 

fluctuations in the noise you observe. 

 

One example of the state-of-the-art in such T measurements comes from the microwave 

radiometry of the cosmic (blackbody) background radiation by various satellite missions.  

Those measurements of the 2.7-K blackbody radiation are conducted with microwave 

amplifiers whose noise temperatures are of order 60 K, yet they have by now resolved 

microKelvin variations in the blackbody temperature (variations with respect to angle, 

not as a function of time).  But they required about a year of averaging time to achieve 

this. 

 

Noise temperature is the preferred measure of amplifier noise performance in radio and 

microwave regions of the spectrum, because such amplifiers are optimized for source 

impedance of a fixed value (typically 50 ).  With such an R-value matching the quotient 

Vn/in, and a noise temperature given via the product of Vn and in, it's clear that an assumed 

R-value, and a quoted noise temperature Tn, fully characterize the noise performance of 

the amplifier.  In the world of operational amplifiers, there's no need to stick to a single 

source resistance, so rather than specify an amplifier by optimum source resistance and a 

noise temperature, the two parameters Vn and in are quoted instead. 

 

In regimes where impedances are assumed, and noise temperatures alone therefore 

suffice to characterize amplifiers' noise, another figure of merit often quoted is the 'noise 

figure', defied by a temperature ratio, and transformed to decibel (dB) units via 
 

NF = 10 log10 (1 + Tn/290 K) . 
 

Our op-amp example above, with Tn = 1.7 K, gives NF = 0.025 dB, which is (very 

roughly speaking) a measure of how much worse is the signal-to-noise ratio at the output 

of such an amplifier, compared to the signal-to-noise ratio at the input. 
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Appendix A.4. Front-end amplifier choices and consequences 
 
The pre-amp module in the low-level electronics part of TeachSpin's Noise Fundamentals 

has a 'front end', or first stage, which is user-configurable.  In particular, the operational-

amplifier chip for the first stage can be changed, and so can the 'topology' or choice of 

circuit.  Here's a summary of what can be changed, and why you'd want to change it. 

 

The choice of chip is basically between an FET- or BJT-input op-amp chip.  The unit is 

shipped with an FET-input op-amp in place, with performance of the sort described in 

Appendix A.3.  The voltage-noise level of the input stage is not as low as it could be 

made, but the range of source impedances for which this choice is adapted have led us to 

choose it as the default condition of the pre-amp. 

 

If you want the lowest in amplifier voltage-noise levels, and are willing to work in the 

range of source impedances under about 10 or 100 k , then it can help to use a BJT-input 

op-amp chip.  The substitution is easy to make, as we've provided a pin-compatible 

integrated circuit in the spare-parts bin.  You'll need to know how to use a 'chip puller' to 

removed the as-shipped input-stage chip from its socket, and you'll need to be able to 

recognize the pin-1 end of the 8-pin dual-inline package of the new chip to orient it 

properly in the socket.  (Any op-amp with a '741 pinout' and tolerating 12-V supplies 

may be used.)  

 
                                        Fig. A.4a:  The input-stage op-amp in the pre-amp, 

                                              with the pin-1 end of chip (and socket) indicated 

                                              by semi-circular 'dimples'. 

 

You can store the op-amp chip that's not in use in the conductive foam in the spare-parts 

box. 

 

Whether you use one chip or the other, there remains the choice of circuit topology for 

the first stage of the pre-amp.  The unit is shipped with the configuration of a non-

inverting amplifier, whose chief benefit is its very high input impedance: 
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+
-

R
F

V
OUT

R
1

V
IN

 
                                  Fig. A.4b:  A non-inverting amplifier topology. 

 

This amplifier has d.c. gain g = 1 + Rf /R1, which takes on the value 1 + (1.00 k /200. ) 

= 6.00 in the as-shipped condition.  Note that Rf is selected via the front-panel selector 

switch, while R1 is a resistor attached to the terminal blocks. 

 

A second topology retains Rf, omits R1, and acts as a current-to-voltage converter: 

+
-

R
F

V
OUT

i
IN

 
                         Fig. A.4c:  A current-to-voltage converter topology. 

 

A third topology is another voltage amplifier, this one inverting in character: 

 

+
-

R
F

V
OUT

R
IN

V
IN

 
                        Fig. A.4d:  An inverting-amplifier topology. 
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Here the gain is g = -Rf /Rin , and the main disadvantage is the relatively low input 

impedance of the circuit. 

 

Beyond these textbook results, it is now necessary to consider the noise performance of 

these circuits.  We take up this topic at two levels of treatment:  first, the low-frequency 

behavior, and second, the behavior at higher frequencies (where capacitances, and op-

amp bandwidth limits, start to matter). 

 

The simpler treatment of the non-inverting voltage amplifier of Fig. A.4b is to model the 

op-amp voltage noise Vn as a series emf in (one of) the amplifier inputs, and to add 

Johnson noise as a model emf in series with each resistor.  (This model omits the op-amp 

current noise.) 

+
-

R
F

V
OUT

R
1

V
1

V
F

V
n

V
IN

 
                      Fig. A.4e:  A noise model for the non-inverting amplifier. 

 

The result is to give 

Vout = g (Vin + Vn) - Vf + V1 (Rf /R1) , 
 

where g is still the d.c. gain given by 1 + Rf /R1.  Relative to the expected output g
.
Vin, the 

actual output displays noise of mean-square size 
 

< Vout
2
> = g

2
 <Vn

2
> + 4 kB T Rf f + (Rf /R1)

2
 4 kB T R1 f . 

 

If the amplifier noise is modeled by a voltage noise density D, or noise power density S = 

D
2
, this gives output noise density 

 

< Vout
2
>/ f = g

2
 S + g · 4 kB T Rf . 

 

Typical values applicable to experiments in Section 1 are g = 6 and Rf = 1 k ; the choice 

of an FET-input op-amp might give D = 8 nV/ Hz or S = 64 x 10
-18

 V
2
/Hz.  Then we get 

 

        < Vout
2
>/ f    = 6

2
  (64 x 10

-18
 V

2
/Hz) + 6  (1.63 x 10

-20
 J)(10

3
 )  

 

          = (2304 + 98) x 10
-18

 V
2
/Hz , 

 

which shows that the circuit's output noise density is dominated by the op-amp's own 

voltage noise.  The Johnson noise of the two resistors adds a small, and constant, 

correction -- that's why the resistors were chosen to have small values.  The whole noise 

budget can be treated as 'amplifier noise', and subtracted by the methods of Section 1.3. 
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A similarly simple treatment of the i-to-V converter of Fig. A.4c is to consider the circuit 

with amplifier voltage noise, and resistor Johnson noise, added. 

 

+
-

R
F

V
OUT

V
F

V
n

i
IN

 
 

                 Fig. A.4f:  A noise model for the current-to-voltage converter. 

 

This model gives  

Vout = - iin Rf + Vn + Vf , 
 

and it gives output noise, relative to the expected d.c. value, of 
 

< Vout
2
>/ f =  < Vn

2
 >/ f + < f

2
 >/ f = S  + 4 kB T Rf  , 

 

still ignoring the op-amp current noise. For shot-noise measurements typical of Section 3, 

the feedback resistor is neither fixed nor small, so we'll consider the exemplary case of Rf 

= 10
7
 .  Then at room temperature we find 4 kB T Rf = (1.63 x 10

-20
 J)(10

7
 ) = 

1.63 x 10
-13

 V
2
/Hz = 0.163 x 10

-12
 V

2
/Hz, which dominates, by far, the op-amp voltage 

noise contribution of S = (8 nV/ Hz)
2
 = 64 x 10

-18
 V

2
/Hz = 0.000 064 x 10

-12
 V

2
/Hz.  

 

Given so large a Johnson-noise contribution from the feedback resistor, it's worth 

comparing its effect with the expected shot noise of the input current.  A feedback 

resistor of 10
7
  is an appropriate choice for an input current in the vicinity of                 

idc  0.5 A, and it will give a d.c. output of (-)idc Rf = (-)5 V.  Such a d.c. current allows 

a computation of expected shot-noise current noise (2 e idc f)
1/2

, or a current noise 

density (2 e idc) = 4 x 10
-13

 A/ Hz.  The i-to-V converter maps this to an output voltage 

noise density larger by the factor Rf, giving 4 x 10
-6

 V/ Hz, or a noise power density of 

16 x 10
-12

 V
2
/Hz.  This exceeds, by 100-fold, the Johnson-noise contribution of the 

resistor, which in turn exceeds, by far, the voltage-noise contribution of the op-amp. 

 

That completes a 'first level' treatment of expected noise levels; at this level, resistors' 

Johnson noise and amplifier voltage noise have been included, but capacitance of 

devices, and bandwidth limits of op-amps, have not been included.  We now take up 

some examples where these effects are considered. 

 

We return first to the non-inverting topology of Fig. A.4b, but now include the effect of 

source capacitance Cin, in parallel with a source of impedance Rin. 
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                       Fig. A.4g:  The effects of input capacitance in the non-inverting amplifier. 

 

We're still ignoring any capacitance that might be in parallel with Rf or R1, because the 

input capacitance Cin is typically the effect that becomes important first.  In this circuit, 

any Johnson (or other) emf in series with Rin is RC-filtered by the Rin Cin combination, 

which puts a bandwidth 'corner' at fc = (2  Rin Cin)
-1

.  The result is that the output noise 

spectrum drops below the white-noise limit at and above fc, with consequences that are 

explored quantitatively in Appendix A.8.  The input capacitance does not reduce the 

equivalent bandwidth of the op-amp voltage noise or the Johnson noise of the resistors R1 

and Rf. 

 

A second example of the effects of capacitance is in the i-to-V converter topology of   

Fig. A.4c, now shown with an actual current source, having parallel capacitance Cin.  

Also shown is a user-selectable capacitance Cf in parallel with the feedback resistor Rf . 

+
-

R
F

V
OUTi

IN

C
IN

C
F

V
n

 
            Fig. A.4h:  The effects of capacitance in the current-to-voltage converter. 

 

In the applications of Section 3, the current source may be a photodiode, and Rf is chosen 

to lie in the range (10
3
 - 10

7
) , depending on the light level.  Temporarily ignoring the 

presence of Cf, the novelty in this circuit is the frequency-dependent gain applicable to 

amplifier voltage noise.  At low frequencies, the op-amp acts like a voltage follower for 

noise signal Vn, and thus gives a 'noise gain' of 1.  But starting at corner frequency fc  

(2  Rf Cin)
-1

, this noise gain starts to rise with frequency.  This gives an excess gain for 



NF Rev ATI 1.2  13.09.2012 

 

A-15 

amplifier noise which peaks near fp = (fc fm)
1/2

, where fm is the open-loop unity-gain 

frequency of the amplifier. 

 

To be concrete about this, we estimate Cin  20 pF as the combined capacitance Cin of the 

input circuitry and the reverse-biased photodiode.  If we're using an intermediate 

resistance value Rf   10
5
 , then 2  Rf Cin  10

-5
 s, and so fc  0.1 MHz.  Given an op-

amp with 'gain-bandwidth product' of fm  10 MHz, this tells us that there is excess 

voltage noise in the 0.1 ~ 10 MHz range, with about a 10-fold excess in the vicinity of 

fp  1 MHz.  

 

This sort of 'noise peaking' is certainly visible, by using a 'scope-based FFT to look at an 

amplified version of Vout, obtained even with a photodiode in the dark. 

 

Once such noise peaking is detected, the noise peak near fp is readily reduced, by user 

selection of the feedback capacitor Cf.  An approximate treatment suggests a value of Cf 

obeying 

,
f

inf

p

m

C

CC

f

f
 

which in this example gives the numbers 
 

10 MHz / 1 MHz  1 + Cin/ Cf, or Cin/ Cf   9, or Cf  Cin/9  2 pF. 
 

In practice, a slightly larger value of Cf might be used; the use of a generic Cf will give an 

i-to-V converter whose response drops below its low-frequency limiting value of 

- Vout/ iin of Rf, starting at a corner frequency near (2  Rf Cf)
-1

 . 
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Appendix A.5. Grounding, shielding and screening, and interference 

 

There are many sources of noise, some of them fundamental and some of them just a 

nuisance.  Happily, electronic noise arises in obedience to Maxwell's Equations, and this 

provides some guidance on ways to diagnose and suppress undesired forms of noise. 

 

1) Grounding 

 

There is the complicated matter of grounding, ie. in establishing the point, assigned to 

have V  0, relative to which all potentials are measured.   

 

In the Noise Fundamentals apparatus, local ground is exhibited by the front and back 

panels of the HLE, by the aluminum front panel of the LLE and the module panels 

installed onto it, and by the metal of the thermal probe (if that is being used).  The HLE 

and LLE grounds are connected by both the power supply cable, and the shield of the 

coaxial cable, that is connecting them.  Maintaining good electrical contact among all 

these objects is important for good electrostatic screening. 

 

All of these grounds are connected to the third-wire ground of the a.c. power line through 

a 10-  resistor, which is in place to limit ground-loop currents that might otherwise be 

induced in low-resistance closed paths through which there exists a time-varying 

magnetic flux.  The separate ground lines in the power, and signal, cables interconnecting 

the HLE and LLE potentially form such a ground loop.  To keep such effects minimal, it is 

useful to keep these two cables close together, perhaps by loosely twisting them around 

each other. 

 

The common V = 0 level is thus present at the shells of all the front-panel BNC jacks on 

both low- and high-level electronics.  That V = 0 level is not changed by attaching any 

isolated device, such as a battery-powered multimeter, to any such BNC jack.  But issues 

can arise with the use of any line-powered instrument such as an oscilloscope, whose 

input connectors typically have their own idea about what ground is, established by their 

own connection to the line supply. 

 

Hence this advice: make the most sensitive noise measurements with multimeters 

connected to, but 'scopes disconnected from, the apparatus.  Try a measurement 

sometime with, vs. without, a 'scope connection, while monitoring the mean-square 

output with a DMM, to see if ground issues are affecting your noise measurements.  If 

they are, and if you need the 'scope connection, you can minimize this effect by plugging 

the power cords from Noise Fundamentals, and from your 'scope, into the same outlet 

fixture (and NOT using two outlets whose 'common ground' is established somewhere 

unknown or far away). 

 

2a) Shielding and screening 

 

Though these terms are not always distinguished, for this discussion we'll use shielding 

and screening as the names for methods of blocking the effects of external magnetic and 

electric fields, respectively.   
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Here's a way to see the effects of imperfect screening.  Set up a Johnson-noise or 

equivalent exercise in which low-level signals are produced in the pre-amp module and 

sent to the high-level electronics.  To favor the detection of rather low-frequency noise, 

use both filter sections as 1-kHz low-pass filters, and pass along the signal to the main 

amp.  Use a gain of about 400 there, and look at the main-amp output with a 'scope.  Set 

the 'scope to 10 ms/div, and arrange for it to trigger synchronously with your local a.c. 

power line.  You should see 'desired noise' on the 'scope; pick a vertical-axis sensitivity 

which keeps the noise within range. 

 

Now change the 'scope to the averaging mode.  The noise level should drop, by about N, 

where N is the number of averages you're taking.  What you're looking for is residual 

structure, signals of fixed phase with respect to a period of 16.7 or 20.0 ms (depending on 

whether your power is supplied at 60 or at 50 Hz).  If you don't see such interference, 

that's good news.  But to generate some (so that you can learn to recognize it), power up a 

soldering gun or other transformer-containing appliance, and now hold that appliance 

somewhere near the pre-amp.  You should now be able to view some 60- or 50-Hz 

interference on the 'scope.  Try re-orienting and re-positioning that transformer, and 

testing its effects near the high-level electronics too. 

 

Such signals as you're now seeing are due to Faraday's-Law emfs, due to rates of change 

of magnetic flux.  The magnetic fields leaking out of the transformer core are the source, 

and their fields are coupling to circuit loops inside the pre-amp.  Once you've seen that 

this can happen, you'll learn 

 to imagine all such sources, and move them away if possible, especially from 

your pre-amp.  (Remember that any line-powered instrument can be a source, 

too.)  Take advantage of the r
 -3

 drop-off of magnetic fields. 

 why the pre-amp box is made of thick aluminum, and of steel.  Good conductors 

can shield against a.c. magnetic fields by virtue of the a.c. currents induced in the 

shield material; good ferromagnetic materials can shield well against d.c. 

magnetic fields (and less well against a.c. fields.)  Shielding against low-

frequency a.c. magnetic fields is the hardest. 

 that the LLE has the greatest sensitivity to a.c. magnetic fields, and that the size of 

this sensitivity will be greater if your pre-amp circuits present a larger-area loop 

to the magnetic field.  This applies particularly to the use of the temperature 

probe, with its wire connection between the Temperature to the Pre-amp modules. 

 

2b) Screening proper 

 

Now that you've tested for B-field effects, almost always related to line frequencies, 

you're ready to think about E-field effects.  If you've never observed these, it's time for 

you to do so.  You need only a 'scope and a paper clip.  Unbend the paper clip to form a 

single stiff wire, and poke one end of the wire into the center conductor of the BNC input 

of your 'scope.  You've built a sort of antenna, which is resistively coupled into the 

'scope, but capacitively coupled to the outside world. 

 

Set your 'scope for 1-M  input impedance and for automatic triggering, and look for a 

signal, without averaging.  The signal will grow, perhaps to large (> 20-mV) size, if you 
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touch the paper clip.  (While you're touching that lead, your body is one capacitor 

electrode -- where's the other?)  You will likely see, amid all the other interference, some 

sinusoidal signals somewhere in the 25-75 kHz range.  Choose the appropriate sweep 

speed on the 'scope, and try to trigger on these signals.  The typical source of such signals 

are fluorescent light fixtures, computer monitors, liquid-crystal displays (including your 

'scope's own display!), and lots of other devices using internal sweeps, scans, and 

oscillators.  If your 'scope has enough bandwidth, you might also see some signals near 

100 MHz, due to local broadcasts of FM signals.  This might also teach you to use the 

reduced-bandwidth option your 'scope may offer, so long as you're doing <1-MHz noise 

investigations. 

 

All of these signals are capacitively coupled, so they depend on E-field lines terminating 

on your antenna and inducing charges there.  Such effects are easily 'screened' by 

interposing a grounded conductor to serve as an alternative, and harmless, place for those 

E-field lines to end.  That's why coaxial cables have a grounded outer conductor, and why 

the Noise Fundamentals pre-amp and probe have grounded metal exteriors.  That's why 

the incomplete coverage of the braided outer conductor of most coaxial cables makes 

them somewhat 'leaky' – signals can leak out, and interference can leak in. 

 

To see that such things matter, here's a way to see what can 'leak through a screen'.  

Remove your paper clip from your 'scope, and devote the 'scope again to looking at the 

noise signal emerging from the main amp.  (Use a configuration like that of Section 1.1.)  

Now here's a way partially to defeat the screening of your pre-amp.  Remove one (of the 

four) screws which hold the pre-amp module into the low-level electronics.  Now build 

an 'antenna' from a few inches of plastic-insulated wire.  Strip away a cm of insulation 

from one end of that wire, and hold that bare-metal end.  Try lowering the insulated end 

of the wire, down through the now-open screw hole, so its bottom end is protruding into 

the pre-amp's internal spaces.  You should see the effect of the failure of screening, as 

fluctuating potentials on your fingers are now capacitively coupled into the pre-amp's 

circuits.  Once you've seen this effect, you'll understand that screening needs to be 

complete to be effective.  You'll understand the construction of the probe better, too. 

 

3) Interference 

 

Grounding, shielding, and screening are all defenses against interference, ie. the injection, 

into your desired noise signal path, of other kinds of signals generated elsewhere.  Once 

you've seen ways to detect and defeat such undesired noise, you should get suspicious of 

what sources can generate it. 

 

If your 'scope is at full bandwidth, you might see effects due to local FM stations, and 

then worry about nearer sources of radio-frequency noise.  If these are weak enough, their 

high frequencies puts them out-of-band for your 0-1 MHz noise investigations.  But if 

they're strong enough, then non-linearities can make their effects show up even in the 

<100kHz band.  So if you can identify and turn off such sources, do so. 

 

We've mentioned the interference in the 10 - 100 kHz band that's generated by sources 

like the solid-state ballasts in modern fluorescent lights.  Many other devices containing 

switching power supplies can also generate interference in this vicinity.  Typically this 
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interference lies at, or near, one single frequency.  The 'dimmers' sometimes used 

between the line supply and incandescent lights are another source of interference, 

typically at harmonics of the line frequency, but extending to very high frequencies.  

Your high-gain noise electronics and your 'scope are the tools for detecting such effects, 

but your environment is unique, and it'll take some creativity and imagination to identify 

all the forms of interference which might be troubling you. 

 

There's one more source of interference that you can identify, test, and avoid:  it's called 

'microphonics', and it shows up as signals generated by mechanical motions of 

conductors due to vibrations.  These motions can either cause a rate-of-change of 

magnetic flux, or a variation in position, changing a capacitance which maps a charge 

into a changing potential.  Either way, you can detect microphonics by watching a 'scope 

view of noise while tapping suspected parts of an apparatus.  When performing shot-

noise experiments with the light bulb, you'll see this effect if you tap the pre-amp near 

that black plastic block containing the bulb.  When using the temperature probe, you may 

also see microphonics during episodes of boiling of liquid nitrogen, especially when it 

fills the probe.  Clearly this effect puts a premium on building rigid circuits, and then not 

bumping them. 
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Appendix A.6. Trouble-shooting 

 
You might be familiar with trouble-shooting, which ought to be a semi-systematic 

method of following a signal through stages of electronics, trying to identify the place 

where something goes wrong.  Trouble-shooting a noise apparatus is harder -- not only 

because there's no 'signal' to track, but also because it can be hard to distinguish the noise 

you care about from extraneous noise.  So here are some suggestions to follow in case 

things seem not to be working as they should. 

 

a) Connections 

 

The first step in trouble-shooting is to review your interconnections.  Have you plugged 

all your tools into the a.c. line?  Do you have the right cable going to a 'scope input?  Are 

you using the correct output from the Low-level Electronics (LLE)?  Have you included 

all the required cables interconnecting sections of the High-Level Electronics (HLE)?  

  

Next, check the connections you have made inside the LLE, particularly in configuring the 

pre-amp's first stage to your measurement needs.  Pull gently on interconnecting wires 

and component leads to ensure they are held firmly in their terminal blocks.  There are 

also some ground connections that you must make in configuring the pre-amp.  Finally, 

have someone else look over your connections, to see if they match the wiring diagram, 

and the schematic diagram, you are trying to emulate. 

 

b) Power 

 

Start with your a.c. line cord, and look for a green LED on the cord-transformer itself.  

Then look for the green LED on the front left of the HLE, and another green LED on the 

front panel of the LLE.  All should be lit when your cord is connected.  If the LLE is 

showing an un-lit LED, suspect that you might have forgotten to turn back the internal 

toggle switch that's accessible when you open up the LLE and 'flip' the front panel.  Check 

the power supplies for the operational-amplifiers inside the pre-amp, by measuring 

(relative to ground) the potentials at the two far ends of the terminal block at the input of 

the first-stage op-amp.  Those points should show potentials of ( ) 13-14 Volts.  As a 

further check, use a voltmeter to check that the auxiliary 11-V power supplies in the LLE 

are working -- there are monitor points on the front panel for this purpose. 

 

c) Signal integrity 

 

The modules in the HLE can be tested independently, by injecting signals from a 

waveform generator at an input, and looking for outputs with a 'scope.  If you can spot a 

signal at the input of a module, and nothing emerges from that module, you have 

identified a problem with that module. 

 

Recall that the filter sections give gain near 1 when you're 'in band', but can give gains 

<<1 when you're far outside their pass-bands.  Recall that the main amplifier can have its 

gain set in the range 10 - 10,000.  At the lower end of this range, it's easy to use a 0.5-V 



NF Rev ATI 1.2  13.09.2012 

 

A-21 

amplitude sine wave in, to get a 5-V amplitude sine wave out.  At the high end, the gain 

is so large that any input amplitude > 1 mV will saturate the output. 

 

d) Saturation 

 

In normal operation, you have access to the noise signal at many points in the 

amplification chain:  early in the pre-amp, and again at its output; and then again at every 

interstage connection in the HLE.  You can use a 'scope, with its input set  to d.c. 

coupling, to look for three kinds of pathologies: 

 

First-stage effects:  you always have d.c.-coupled access to the output of the first-

stage op-amp in the pre-amp.  This output is connected (through a 1-k  resistor) 

to the MONITOR BNC jack on the Pre-amp panel.  If this output shows a potential 

near ( )12 Volts, that suggests that the first stage has ‘railed out’, most likely 

because of an incorrect wiring of this first stage.  Under these conditions, the first 

stage cannot be faithfully transmitting noise to subsequent stages. 

 

d.c. offsets:  If you use d.c. coupling between stages, then a gain stage can turn  

an input of (1 V of offset, + noise) into an output of (say) 10 x (1 V of offset, + 

noise) = 10 V of offset, + 10 x noise.  Much more of this, and the d.c. offset will 

drive the noise into the 'rails', the upper and lower voltage limits, of about 12 V.  

Once a d.c. offset has caused a signal to 'rail out', any noise atop the d.c. offset is 

wiped out. 

 

The third thing to look for is any evidence of noise that's gotten too large.  

Supposing that the use of a.c. coupling between stages (see Appendix A.2) has 

dealt with d.c. offsets, yet still there remains the problem of saturation.  If a noise 

input falls in the 2-V range, a gain-of-10 amplifier ought to produce output noise 

in the 20-V range.  But in this apparatus it won't:  the largest positive and 

negative excursions will be 'clipped' at the levels near 12 Volts imposed by the 

range of linearity of the amplifiers.  That clipping not only removes part of the 

energy which should be in the noise, it also generates distortion, which puts 

energy at unpredictable locations in frequency space. 

 

e) Excess noise 

 

There will be times when you suspect that you're getting more noise than you should be.  

Here are some possible causes: 

 

First, you should monitor the squarer's time-averaged output with a digital multimeter 

(DMM) as a measure of the noise.  Then you should disconnect any and all ground-

reference test instruments (like oscilloscopes) from interacting with the apparatus.  If the 

DMM reading changes, then you can suspect some interference (typically, a ground loop) 

is contributing to what you're seeing.  See Appendix A.5 for details. 

 

If you have a 'scope attached, and have shown by this test that it's not contributing to the 

measured noise, you can now use that very 'scope to look for interference in what should 
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be a pristine noise signal.  Appendix A.5 teaches you the use of a.c. line triggering, plus 

averaging, to see the effects, if any, of all 60- (or 50-)Hz periodic effects.   

 

You may have seen, in Appendix A.5, that a dominant form of electrostatically-coupled 

interference in your lab is at 25 or 48 kHz, or some other medium-high frequency, 

generated by fluorescent light fixtures, etc.  Here's a 'scope-based way to search for 

contamination of your noise signal by interference from such a source: 

 use the 'paper clip method' of Appendix A.5 to get a view of that interference on 

ch. 1 of your 'scope, and trigger on that interference; also pick a time base giving 

several cycles' view of the interference.  Now put your noise signal into ch. 2 of 

the 'scope.  Use signal averaging.  If the noise signal is contaminated by this sort 

of interference, upon this kind of triggered signal averaging, ch. 2's signal will 

average not to zero, but to a non-zero trace revealing the interference which is 

contaminating the noise. 

 or, use the 'scope-based FFT on the paper-clip pick-up signal to establish where (in 

frequency space) the interference is located; now switch to an FFT of the noise 

signal, and look for a peak, a location of excess noise, atop the expected white-

noise background. 

 

Turning off and on all the room lights, while monitoring with a multimeter the squarer’s 

averaged output <V
 2

>, can sometimes show that electrostatic interference is contributing 

to the total noise detected.  If you do see such an effect, suspect that you have a problem 

in some part of the LLE with imperfect screening against electrostatic effects. 

 

f) Suppressing interference 

 

If you find interference by one of these tests, you might wonder how it's getting into your 

system.  Start by suspecting an entry point in the LLE.  Check that all four thumbscrews 

(at top and bottom of the main LLE panel) are snugged down (finger-tight). Then check 

that all eight flat-head screws holding the Modules' panels to the frame are in place, and 

tightened.  If you're not using the Thermal Probe, be sure that you 'cap off' the connector 

where its cable would enter.  Use BNC 'shielding caps' as well at the two most crucial 

locations: the pre-amp's Monitor output, and the Series Resistor's Monitor position.  This 

should deal with the potential paths for capacitively-coupled interference to get into the 

pre-amplifier. 
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Appendix A.7. Test and repair of the d.c. power supplies 
 

The low-level electronics box, in addition to 'hosting' the pre-amp and temperature-

control modules, provides you with some utilities.  Among these are the two 11-Volt 

power supplies.  (Note that one range switch, and one variable knob, control one supply 

with 0 to +11-Volt output, and also control another, with 0 to -11-Volt output.)  These 

supplies have a current capability of 250 mA, yet they have been crafted to have noise 

levels under 5 nV/ Hz, all the way from d.c. to >1 MHz.  Separate from these two utility 

supplies, but of very similar design, are the power supplies which run all the operational 

amplifiers in the pre-amp and temperature-control modules in the low-level electronics. 

 

Building voltage supplies as 'quiet' as this takes careful regulation, which rejects voltage 

variation at all sorts of frequencies, and therefore has to react in a time << 1 s.  The 

regulators, in turn, are protected against damage in case the power supply outputs are 

short-circuited.  But the protection cannot be instantaneous, so there are implications: 

 

1) Please wire items to these 11-V supplies only with the power switched OFF 

inside the Low-level Electronics.  When you've 'flipped' the low-level panel to work on 

its inside, there's a toggle switch visible on the power-entry box, with a red LED to 

remind you when the power is on. 

 

2) Try to try not to short-circuit these power supplies ! 

 

3) When you turn back on the power inside the LLE box, you can check that the red 

power-on LED comes back on, and you can check that two fault-mode red LEDs on the 

power-regulating printed-circuit board don't light up. 

 

 
Fig. A.7a:  Location of two red LEDs which are ordinarily not lit, but which will light up (though 

not very brightly) in case of a fault in the power-regulating circuits. 
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When you've flipped the panel back to its right-side-out configuration, you can re-check 

the proper operation of its 11-V power supplies. 

 

4) Some “insults” to the power supplies could result in the last-stage pass transistors 

failing, and failing to an open-circuit condition.  Under this mode, you'll see no 11-V 

capability, and you'll have to replace the pass transistors.  The procedure for Replacing is 

described at the end of this s ection.   

 

5) Other insults to the power supplies can cause the pass transistors to fail to a short-

circuit condition. Under this mode, they will pass d.c. current, but will fail to remove the 

high-frequency fluctuations in the voltage they supply.  So you'll still get an apparently 

useful 0 to +11-V, and/or a 0 to -11-V, output, perhaps with even a bit more voltage 

range than you got before.  But the output you get will now be much noisier, giving 

voltage noise density perhaps >200 nV/ Hz instead of typically <2 nV/ Hz at the 

outputs.  You'll need to measure this noise level to diagnose this problem, but you can't 

see this excess noise on a 'scope.  (That's because 200 nV/ Hz of noise density, extending 

all the way from d.c. to 1 MHz, still gives a net voltage fluctuation of only 200 V, rms 

measure.) Here's a circuit that will do the noise measurement you need -- it'll pass all 

noise components above about 1 Hz to the pre-amp, which is configured just as in 

Section 1.1: 

 

+
-

R
F
 = 1 kOhmR

1
 = 200 Ohm

C =1 uF

R
IN

 = 100 kOhm

0 to +12 V

or 0 to -12 V

power supply

under test

switch

 
Fig. A.7b:  A circuit for a.c.-coupling one of the 0-11 V power supplies to the input-stage op-amp 

of the pre-amp, with input stage configured for gain 6.00.  (This gives overall pre-amp gain         

G1 = 600.)  Note that a switch setting can give you input connected to ground, rather than the 

positive or negative supply, as a 'control group' or check. 

 

You'll need to understand the gain of the pre-amp, and the main-amp, and the bandwidth 

of your filtering, to get this method to work quantitatively.  If you confirm the high-noise 

state of output, you'll need to replace the pass transistors. 
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Replacing the pass transistors 

 

Conduct this operation with the low-level electronics' power turned OFF. 

 

The transistors you might need to replace are labeled on the silk-screened printed-circuit 

board of the power-regulating part of the low-level electronics: 

 

 (for the 0 to +11-V supply) Q2 type 2N4401 

 (for the 0 to -11-V supply) Q6 type 2N4403 

 (for the op-amp + supply) Q3 type 2N4401 

 (for the op-amp - supply) Q5 type 2N4403 

 

Before you take out a suspect transistor, make a sketch of its orientation of its black 

plastic package, so that you can orient the three leads of the replacement part correctly.  

Note that the orientations of Q5 and Q6 differ from those of Q2 and Q3.  When you're 

ready, unscrew the three terminals to remove a transistor's leads; get a replacement device 

from your spare-parts bin; bend its leads to match those of the suspect device; and insert 

and screw it into the terminal block. 

 

After you've replaced one transistor, here's a two-part test to see if it is working correctly:  

restore power to the low-level electronics, and 

 use a DMM to test the d.c. level, variable or fixed, of the power supply you've 

repaired, for proper operation; 

 then re-wire the noise-level test above to see if the power supply output has now 

gotten 'quiet' -- for this test, you'll have to re-flip the low-level electronics' front 

panel and close up the box.  
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Appendix A.8. Limits to the Johnson noise spectrum 
 
We claim that Johnson noise is white, ie. that it delivers equal amounts of energy into 

frequency bins of equal width.  But the frequency axis extends from zero to infinity, so 

the total energy summed over all frequencies would seem be infinite.  Clearly the 

Johnson noise spectrum must drop to zero at some high frequency; else we'd have an 

'ultraviolet catastrophe', just as in blackbody radiation.  

 

Nyquist's derivation of Johnson noise shows that not only the disease, but also the cure, 

has the same form in both problems.  In blackbody radiation, the electromagnetic spectral 

energy density (f) (with units of Joules of energy, per cubic meter of volume, per Hertz 

of bandwidth) has a frequency dependence of the form 
 

(f)  f 
3
 [exp(hf / kBT) - 1] 

-1
 

 

which can be written as 

.
1

)(
/

2

Tkhf Be

f
ff  

 

The factor f 
2
 is appropriate to a 3-d calculation, and it turns into a factor f 

0
 in Nyquist's  

1-dimensional calculation of electromagnetic energy in a transmission line joining two 

resistors.  The second factor has the same origin, and the same consequences, in 

blackbody radiation and in Johnson noise.  It's a factor which goes to a constant at low 

frequencies, but drops exponentially like exp(-hf / kBT) once we have hf >> kBT.  That 

result puts quantum mechanics into our electronics problem, and it cures our ultraviolet 

catastrophe.  It also tells us that (if nothing else were to limit the spectrum) Johnson noise 

can only extend out to about fmax  kB T / h.  (What upper frequency limit does that set, for 

room-temperature experiments?  How about at T = 20 mK?)  Short of this quantum cut-

off, and certainly in the range relevant to tabletop electronics, we have hf << kBT, and 

using hf /(kBT) << 1 allows us to write the spectral energy density appropriate to one 

dimension as 

.

1)1(
1

)( 00

/
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Notice this result is linear in temperature T, and that it is also independent of frequency.  

So this is the origin of the overall f 
0 

T
1
 or 'white', but temperature-dependent, Johnson-

noise spectrum. 

 

In practice, Johnson noise nearly always drops below the book-value density at much 

smaller frequencies than the quantum limit mentioned above.  We model a real resistor, 

which displays Johnson noise, as the series combination of a Johnson-noise emf and an 

ideal (noiseless) resistor.  What we'd like to measure, with an ideal voltmeter, is the 

Johnson noise voltage VIN(t), using the circuit in Figure A.8a. 
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V
R

IN

V
IN

 
                                                                           Figure A.8a 

But in practice, there is capacitance, say between the two wires, or at the input of the 

voltmeter, so in reality the circuit we have (as shown in Fig. A.8b, in equivalent circuits) 

is formed by the source resistor's own resistance, and the stray (or voltmeter) capacitance.  

A filter like this has a 'corner frequency' given by fc = (2  Rin C) 
-1

, and this corner is of 

real concern.  If you use a source resistor of Rin = 100 k  and have even 10 pF of stray 

capacitance, you have Rin C = (10
5
  )(10

-11
 F) = 10

-6
 s, so 2  Rin C  10

-5
 s, and             

fc  10
+5

 Hz.  That is to say, the Johnson noise spectrum can easily be rolling off at 100 

kHz and above. 

  

V
R

IN

V
IN

C
V

R
IN

V
IN

C

 
                                                                        Figure A.8b 

 

 

The problem is worse for larger source resistance, and much worse when the temperature 

probe of Section 4 is used -- there, the need for a coaxial cable raises C to about 100 pF.  

That's why the use of bandwidths f not extending to high frequencies is important for 

getting accurate values of mean-square Johnson noise. 

 

A model for equivalent noise bandwidth, under these circumstances, is the usual integral 

of the square of the gain function, but now with three factors in it: 

 

 a possible high-pass response at (low) frequency f1 , and 

 

 a low-pass response at (higher) frequency f2 ; both of these taken to be ideal 

Butterworth functions, but now these are supplemented by 

 

 a one-pole low-pass roll-off response at the corner frequency fc determined by 

capacitive effects. 

 



NF Rev ATI 1.2  13.09.2012 

 

A-28 

So the complete gain function becomes 

.]
)/(1

1
[]

)/(1

1
[]

)/(1
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24
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2
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cffffff

ff
fG  

 

You'll find (by numerical integration) that if the capacitively-caused corner fc lies at 

frequency 10
.
f2 or higher, the equivalent noise bandwidth is decreased by less than 1% 

due to this effect. 

 

But there is another interesting limiting case.  Suppose that we use no high-pass filter at 

f1, and no low-pass filter at f2, but that the bandwidth is limited only by the capacitive 

roll-off at the source.  The noise is then born with a density uniform in frequency, 
 

S = <V
2
(t)> / f = 4 kB T R , 

 

so the mean-square value of the emerging signal would be 
 

.4
)(

)(
0

2

2 dfRTkf
f

tV
tV B  

 

That would be infinite! but only because we left out the factor G
2
(f) in the integrand.  In 

the RC-filter case at hand, G(f) is the magnitude of the RC-filter's transfer function, which 

is given by 

G(f) = [1 + (f /fc)
2
] 

-1/2
 . 

 

So instead of an ultraviolet catastrophe, we get 
 

.
2

4
)/(1

4
)/(1

1
4)(

0 20 2
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B fRTk
ff

df
RTkdf

ff
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Now the use of fc = (2  R C)
-1

 gives a neatly finite result, 
 

<V
2
(t)> = 4 kB T R ( /2) (2  R C )

-1
 = kB T /C . 

 

If you look at the circuit we're effectively using, you'll see that V(t) is not only the voltage 

across the meter, it's also the potential difference across the capacitor C.  That capacitor 

stores energy in amount Ucap = C V
 2
/2, so, though the instantaneous value is fluctuating, 

the time-averaged value of stored energy is non-zero, and given by 
 

<Ucap> = (1/2) C <V
2
(t)> = (C/2)  kB T /C = (1/2) kB T , 

 

which is a lovely illustration of the equipartition theorem.  In fact, it shows that 

dissipation in a resistor (attached in parallel to a capacitor) comes accompanied by 

thermal fluctuations which prevent the resistor from discharging the capacitor all the way 

to zero.  Instead, those fluctuations are the very mechanism responsible for the energy 

that, on average, is present in the capacitor.   

 

The most remarkable feature of this result is that the measurable answer for < V
 2

(t)> 

depends not at all upon the value of the resistance R, yet the resistor is nevertheless the 

source of the mean-square voltage being measured.  In fact, you can measure a result 
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which depends on the resistor's temperature T, but not on its resistance R!  The reason is 

that R's value turns up in two places, and cancels in this result: doubling R would double 

the Johnson noise power density, but it would also halve the equivalent bandwidth of the 

circuit, leading to the disappearance of R's value from the result.  Perhaps you can think 

of a project, using a thermistor or a photoresistor to give a resistor of externally-

controllable R-value, which tests this remarkable prediction.  
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Appendix A.9. Gaussian noise vs. white noise 
 
You've repeatedly seen the words 'white noise', and you have perhaps also heard of 

Gaussian noise.  Both the Johnson noise, and the shot noise, that you've been studying are 

both white and Gaussian in character.  But these are two separate attributes of noise, and 

this section discusses the distinction. 
 

We'll start by assuming you have a Johnson- or shot-noise source, amplified by the pre-

amp, unfiltered but further amplified by the main amp to give a broadband noise signal of 

about 3 Volts (in rms measure). 
 

That noise is white if it delivers equal amounts of power in any two frequency bands of 

equal width.  That is to say:  if after the main amp, an ideal sharp-edged filter were to 

pass all (but only) frequencies in the band (f0 - f /2, f0 + f /2), then the mean-square 

value for the resulting filtered signal would be linear in the choice of bandwidth f, but 

independent of the choice of band-center f0.  Whiteness of noise in a frequency-domain 

stipulation, summarized by saying that spectral density S(f) is in fact frequency-

independent.  The broadband noise you'd get in the set-up mentioned above is very near 

to white in the 1-100 kHz range.  In practice, there might be excess low-frequency noise 

visible below 1 kHz, originating in the amplifiers; and there would also be some roll-off 

of noise at high frequencies, perhaps below 100 kHz or beyond 1 MHz (see Appendix 

A.8 for details). 
 

By contrast to this frequency-domain view, the Gaussian nature of noise is specified 

wholly in the time domain.  Think back to that broadband noise signal emerging from the 

main amplifier, which (in the absence of high- or low-pass filtering) has frequency 

content out to about 1 MHz.  Suppose you sample and digitize that voltage, at a collection 

of random times (or equivalently, at a collection of times separated by more than the 

autocorrelation time of the source, which is here about 1 s), and produce a long list of 

instantaneous voltage values {Vi}.  Now you can make a histogram of that list, and the 

noise is Gaussian only if that histogram matches a Gaussian distribution.  (Have you lost 

the rare outliers that the Gaussian distribution predicts?  If so, is that because your analog 

voltage signal has 'run into the rails' at some point?  If so, reduce the rms measure of the 

source noise, or the gain of the main amplifier, until even rare events will fit into your 

range.) 
 

Noise can be Gaussian as a consequence of the independent operation of many 

independent sources; in that case, Gaussian behavior is to be expected because of the 

central limit theorem.  Noise can be white as a consequence of processes of short or zero 

autocorrelation time (see Appendix A.11.)  So it's no accident that some fundamental 

kinds of noise are both white and Gaussian. 
 

But noise can be white and not Gaussian at all.  For example, if you deliver a single pulse 

of fixed amplitude and brief duration, its Fourier spectrum is white (out to a frequency 

about equal to the reciprocal of that brief duration).  Now if you have a succession of 

such pulses, all of identical polarity, amplitude, and still-brief duration, but occurring at 

random (Poisson-distributed) times, the noise this represents is still spectrally white.  But 

its voltage histogram is nothing like Gaussian -- instead, it would consist of only two 

values, corresponding to the pulse-absent and pulse-present conditions. 
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Similarly, noise can be Gaussian but not white.  The Noise Calibrator built into the high-

level electronics has a voltage histogram which is very close to Gaussian; that's due to the 

central limit theorem and the use of lots of sinusoids in its construction.  As is happens, 

the noise is also white, by design, in the 0 - 32 kHz band.  But the way such pseudo-noise 

sources are built would allow for any desired shape of S(f)-function, including 'pink 

noise' with extra energy at low frequencies. 

 

Finally, there's a connection between the voltage histogram of a time-domain signal and 

its rms measure.  If p(V) gives the probability of getting a particular value V for the 

voltage, then 

 p(V) dV =1 
 

expresses the normalization condition for probability.  Similarly 
 

 V p(V) dV 
 

would be the way to compute the d.c. average value of the signal (if any), and 
 

 V
 2

 p(V) dV 
 

would give the mean value of the square of the voltage.  The rms measure of the signal is 

the square root of this, 

Vrms  [  V
 2

 p(V) dV] 
1/2

 . 
 

Of course the rms measure is alternatively given by a calculation in the frequency 

domain.  By definition of (single-sided) spectral density, we have 

0

2 ,)()( dffStV  

so we can also write 

1/2

0
[ ( ) ] .rmsV S f df  

 

The particular form of p(V) for a Gaussian noise signal of rms measure A is given by 

.)
2

(exp
2

1
)(

2

2

A

V

A
Vp  

 

Thus a noise signal of 3-Volt rms measure has parameter A = 3 Volts, and a Gaussian 

distribution of voltage values which has relative size 1 (at V = 0), e
-1/2

  0.607 (at V = 3 

Volts), e
-2

  0.135 (at V = 6 Volts), and e
-4.5

  0.011 (at V = 9 Volts).  You may use an 

integration on the formula above to find, for example, the proportion of all voltage 

samples which are expected to have |V| > 10 Volts. 
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Appendix A.10. Fourier methods for quantifying noise 

 
This section takes up the possibility of getting the frequency spectrum of noise by 

computational processing of an amplified noise signal, captured in the time domain.  We 

assume an ordinary noise experiment, complete with pre-amp, filter sections(s), and main 

amplifier, except that in this method, we give up the use of the squarer, and instead 

acquire the main-amp output as a voltage-vs.-time waveform. 

 

a) Via oscilloscopes 

 

You've monitored the Noise Fundamentals main-amp output on an oscilloscope on many 

occasions, but have always viewed the waveform itself -- that's the 'time-domain' VA(t) 

signal.  But many 'scopes offer an 'FFT' or fast-Fourier-transform utility, intended to show 

you a 'frequency-domain' view instead, of the spectral content of the VA(t) signal.  We'll 

see below some details on how such things are computed from a sampled and digitized 

version of VA(t).  Here, let's mention typical limitations of 'scope-based FFT presentations: 

 

1) There's nothing to enforce on the user the choice of an adequate sampling 

rate, and the wrong choice will lead to a grossly deceptive view of the frequency 

content of the signal.  (This effect involves the 'aliasing' of spectral content to 

wholly other locations in frequency space.)  The requirements for sampling rates 

which will give a display faithful to the waveform's actual spectral content are 

given in section b) below. 

 

There's also nothing to prevent the user from choosing too sensitive a vertical 

scale on the 'scope, in which case an input signal which saturates the digitization 

range of the 'scope can have its spectral content splattered about unpredictably in 

frequency. 

 

2) The horizontal scale of spectral displays is given correctly by 

oscilloscopes' FFT routines, but the vertical axis is typically left in arbitrary units.  

It's also traditionally plotted on a logarithmic or decibel (dB) scale, with 10 

dB/div meaning that every vertical division signifying a ten-fold increase in 

spectral power.  But reading the actual spectral power, in absolute V
2
/Hz units, is 

a capability reserved for special 'spectrum analyzers'.  One of the main goals of 

the sections below is to lead readers through a treatment of actual computation, by 

Fourier means, of results for noise power-density spectra, whose units and 

normalization can be understood and trusted quantitatively and in detail. 

 

b) Sampling 

 

This is possible given a digital sampling instrument, such as an oscilloscope, which can 

acquire a long series of (perhaps 10
3
 to 10

5
) voltage 'samples', all acquired at some 

uniform spacing in time.  The reciprocal of this inter-sampling spacing is called the 

'sampling rate', and it is critical that this rate be high enough. 
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How high is high enough?  This comes from Shannon's 'sampling theorem', which says 

that if a waveform contains only frequency content below a maximum frequency fmax, 

then a sampling rate  2 fmax is adequate.  In such a case, in fact, the samples alone permit 

a complete reconstruction of the signal (including its unseen portions between the 

sampling points!).  So if TeachSpin's Noise Calibrator output has frequency content 

(only) in the 0 - 32 kHz range, a sampling rate of  64 kSa/s (kilo Samples per second) 

would suffice.  In practice, we might have a 'scope arranged to acquire one sample every 

10 s, giving an adequate sampling rate of 10
5
 Sa/s = 100 kSa/s. 

 

Now generic noise signals lack such an obvious upper-frequency limit, so for faithful 

sampling, it's important to limit their spectral coverage, by using a low-pass filter before 

the sampling.  (You may have heard this called an 'anti-aliasing' filter.)  But typical filters 

do not impose a sharp upper edge to a spectrum.  You've seen in Section 2.2 that the 

TeachSpin low-pass filters pass some spectral energy out to 10 fc, where fc is their 

nominal corner frequency.  So if you use a 100-kHz low-pass filter, there's enough 

energy out to 1 MHz (and a bit more beyond) that you'd want to sample at 2 MSa/s.  

Note that at this sampling rate, an array of 10
5
 samples will fill up in just 50 ms of time.  

Note also that if you use a lower corner frequency in your filter, you can afford a lower 

sampling rate. 

 

c) Scaling 

 

Suppose from a waveform V(t) you have a collection of samples, {V(tk)}, where the tk are 

the sampling instants, separated by fixed sampling interval t.  If there are N such 

samples, we could lay them out in the -T/2 < t < T/2 interval according to 
 

tk = - T/2 + (k)  t , for k = 0 to N - 1. 
 

Here T is the total duration of your sampling, and N t = T relates N, T, and t. 

 

Now if you had captured the actual continuous waveform V(t), you'd reach for Fourier 

transforms, which we'll quote here in their complex-exponential form, and in ordinary 

(not angular) frequencies.  In that notation, the Fourier-transform pair is 
 

,)(
~

)(;)()(
~ 22 dfefVtVdtetVfV tfitfi  

which together form a theorem, under certain conditions.  But noise signals which go on 

indefinitely do not meet those conditions, since they're of constant power, rather than of 

finite energy.  Yet we can define a scaled version of the voltage signal which preserves 

the frequency content of V(t), via 
 

 WT(t)  (1/ T) V(t) , for -T/2 < t < T/2 ;  but   0 elsewhere. 
 

This claims that WT(t) = 0 outside your sampling duration (which might be true, for all 

that you've recorded).  With this definition, we have 
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1
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Experimental voltage signals are real-valued, so this right-hand side clearly defines  

<V 
2
(t)>, the mean-square value of the noise voltage, which we presume is finite.  Then 

the left-hand side shows that WT(t) is a square-integrable function to which Fourier's 

Integral Theorem does apply, allowing us to define its transform as 
 

.)(
1

)()(
~ 2

2/

2/

2 dtetV
T

dtetWfW tfi
T

T

tfi

TT  

The inverse transformation is given by 
 

.)(
~

)( 2 dfefWtW tfi

TT  

 

Because these W-functions are a Fourier-Transform pair, they satisfy Parseval's Theorem, 
 

,)(
~

)(
22

dffWdttW TT  

 

and now we can see that both sides of this equation have value <V 
2
(t)>, the mean-square 

noise voltage.  So a physicist's viewpoint on this equality is to think of a noise source of 

some mean-square strength, and then to see that this given quantity (proportional to noise 

power) can be dis-aggregated either according to its time of occurrence (on the left), or 

according to its spectral distribution (on the right). 
 

d) Frequency content 
 

The Fourier transform W
~

T(f) is defined on the whole line, -  < f < , so it seems to 

contain both positive and negative frequencies.  In practice, since the original signal V(t) 

is real-valued, W
~

T(f) can be shown to obey 
 

,*)(
~

)(
~

fWfW TT  
 

where the * stands for complex conjugation.  So the information in W
~

T  for positive 

frequencies alone is sufficient to describe the whole function.  It's easy to show that 
 

0

2
2

2

,)(
~

2)()(
~

dffWtVdffW TT  

so integrals over positive frequencies alone can tell you the full mean-square measure of 

the noise. 
 

In practice, the discrete Fourier-transform methods described below are best conducted 

by keeping W
~

T(f) as a complex function, and extracting its spectral content at the end of 

the computation by adding together the 'positive and negative' frequency contributions. 
 

e) Spectral density function 
 

So given a noise waveform V(t), observed for a duration T, it's feasible to define a scaled 

function WT(t), and to compute its Fourier transform W
~

T(f).  Then we might define a 

noise power spectral density 
 

S(f) = 2 | W
~

T(f) |
2
 , 

 

which is a computable function obeying the desired normalization 

.)()(
0

2 tVdffS  
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Thus the mean-square value of a voltage-noise function has been dis-aggregated into its 

frequency content.  We'd call this S(f)-function the 'single-sided spectral density of noise 

power'.  It turns out to have units of V
2
/Hz, so integrating it over frequency gives Volts-

squared, the correct units for <V 
2
(t)>.  So this is the computational route from V(t) to a 

spectral density S(f). 

 

The only deficiency in this procedure is that it lacks any proper limit as T  .  If you 

have an actual recording of the waveform of a noise source, and process it for ever-wider 

-T/2 < t < T/2 windows of observation, you'll find that the S(f) functions computed by the 

above procedure gives you ever-higher spectral resolution, and shows you ever-finer 

details of apparent frequency variation of S(f).  All of this highly resolved structure is 

irreproducible, and would show up differently on a second try, for the same noise source.  

In practice, spot values of S(f) produced by this procedure aren't convergent or useful, but 

wide-band or even narrow-band integrals like 
 

2

1

)(
f

f
dffS  

 

are useful, and they do converge to well-behaved limits as T  .  We'll use this fact 

below to motivate spectral-averaging of computed S(f) values. 

 

f) Discrete Fourier transforms 

 

It should be clear that actual Fourier integrals cannot in fact be computed unless you were 

to have access to continuously-varying functions like V(t).  In practice, we have to be 

content with a finite collection of samples, such as the set {V(tk)} measured at N 

sampling points tk separated by intervals t.  But this very finiteness allows us to change 

from the integral transforms to 'discrete Fourier transform' sums instead, as follows. 

 

We give ourselves a time window of duration T, which might be the full duration of the 

experiment, so that (for all we know to the contrary), a signal V(t) might actually repeat, 

with period T, outside our window of observation.  That's a convenient assumption, since 

any complex-valued function with period T can be written as a sum of complex 

exponentials of particular frequencies.  We'll choose an indexing in which f0 = 0 is the 

'd.c.' term, f1 = 1/T is the 'fundamental' frequency, and write 
 

fn = (n) (1/T) = (n) (N t)
-1

 , for n = 0, 1, 2,  . . . 
 

Then there exists a Fourier series for the assumed-periodic V(t)-function, 
 

V(t) = n (coefficient #n) exp(-2  i fn t) . 
 

Under our convenient fiction of the periodicity of V(t), we can just as well take a time 

window 0  t < T, defining the N sampling points spaced by interval t as 
 

tk = (k) ( t) ,  k = 0 to N - 1,   still with  t = T/N . 
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To achieve a perfect fit to the N sampled data-points {V(tk)}, it turns out that we require 

exactly N (complex-valued) coefficients, which we choose to write as 
 

1 12

0 0
( ) [ ( )] ( ) exp[ 2 ( ) / ] .n k

N Ni f t

k n nn n
V t V f e V f i n k N  

 

This sum is called the 'forward DFT', and it maps the N frequency-domain entries {V
~
(fn)} 

to the N time-domain entries {V(tk)}.  This mapping is also exactly invertible -- the 

transformation going the 'other way' is called the 'inverse DFT', and is given by 
 

1

1
( ) ( ) exp[ 2 ( ) / ] .

N

n kj
V f V t i k n N

N
 

 

These two equations form a discrete-Fourier-transform (DFT) pair, and they are of 

extreme computational interest because of the amazingly efficient Cooley-Tukey 'fast 

Fourier transform' or FFT algorithms which have been devised to evaluate them.  We've 

written the transforms with indices k, n = 0 to N - 1, and matched the notation and the 

normalization used by the open-source program Sage in its fft()and inv_fft() 

functions. 

 

So here's what we actually do to get power spectral density.  We want values of 
 

,)(
1

)(
~

0

2
T

tfi

T dtetV
T

fW  

which we compute by changing the integral to the Riemann sum we'd use to approximate 

it, 

1 2

1

1
( ) ( ) .k

N i f t

T kk
W f V t e t

T
 

 

For fictionally-periodic V(t), and for a finite number of samples of it, we're content to 

know W
~

T(f) at the frequency values fn given above, yielding 

 

1 12

0 0

1 1
( ) ( ) ( ) exp[2 ( ) / ] .n k

N Ni f t

T n k kk k

t
W f V t e t N V t i k n N

NT T
 

 

The factor preceding the bold dot is just T, while the whole quantity appearing after the 

dot is precisely a value from an output array of N complex numbers, the result of the 

inverse DFT on the input array {V(tj)}.  The normalization needed after doing the DFT is 

just multiplication by that T factor, which gives W
~

T(fn)-values their proper units of  

V  s = V/ Hz, so we have  

 

( ) _ { ( )} .T n kW f T entry n of inv fft of the V t array  
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Next, the absolute squares of these values give |W
~

T(fn)|
2
 values, with units of V

2
/Hz, 

which are very closely related to the desired spectral density S(f).  We need only to 

remember three things: 
 

1) Given an list of sampled voltage values, indexed by k = 0 to N - 1, namely 

{V(tk)}, we need only an inverse-DFT algorithm which produces the output list, {V
~
(fn)}, 

a list indexed by n running from 0 to N - 1.  The DFT algorithm needs to know the value 

of N (the length of the input and output lists), but it does not 'need to know' anything 

about the value of t or T.  And by this stage of the computation, all reference to the W 

and W
~
 functions can be dropped – the inverse DFT algorithm can be applied directly to 

the list of V(tj) values. 
 

Given our choice of indexing, the frequency values associated with the index n are fn = 

(n) 1/T, so f0 is the d.c. term, f1 = 1/T is the 'fundamental frequency', f2 = 2/T, and so on.  

To get single-sided spectral densities, we need to account for the 'negative frequencies' 

too, and (since W
~

T(f) turns out to be periodic in f) these can be found in the upper half of 

the list of N values of fn.  In fact, to get the spectral density at a p-for-particular 

frequency, where integer p maps to frequency f = p 1/T, we take 
 

2 2 2 2

( 1/ ) ( ) ( ) [ ( ) ( ) ] .T n p T n N p n p n N pS f p T W f W f T V f V f  

 

For a real-valued function V(t), the DFT will produce results giving equal contributions 

from the two absolute-squares shown.  (This is the discrete version of our previous result 

S(f) = 2 | W
~

T(f) |
2
 ).  The frequencies which collectively account for all of the noise 

power include p = 0 (the d.c. term), and then from p = 1 to (N/2)-1.  So the maximum 

frequency at which we get back spectral-density data is 
 

.
2/121

)1
2

(
1

)1
2

(max
tN

N

tN

N

T

N
f  

 

Since 1/ t is the sampling frequency, we see that our spectral coverage is from d.c. to 

(just below) half the sampling frequency.  (That's why digital audio uses a sampling 

frequency of 44.1 kHz, so as to cover completely the audible frequency range from d.c. to 

about 20 kHz.) 
 

2) The S(fn)-values thus computed obey a sum rule, which results from the discrete-

Fourier-transform version of Parseval's Theorem: 
 

21 1 2

0 0

1
( ) ( ) .

N N

n kn k
V f V t

N
 

 

This can be manipulated to give 
 

/2 1 2

0

1
( ) ( )

N

nn
S f V t
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whose units match:  (1/s) V
2
/Hz on the left, and V

2
 on the right.  This equality can be 

used as a valuable check on normalizations and DFT algorithms.  It is also the finite-sum 

version of 

,)()(
0

2 tVdffS  

 

which (under the assumption of adequately dense sampling) has the Riemann-sum 

approximation 
/2 1 2

0
( ) ( ) ( ) .

N

n nn
S f f V t  

 

Since fn = (n)  1/T, we see fn = 1/T, so this result agrees with that above. 

 

3) The S(f)-values thus computed will suffer from the excess spectral resolution 

previously mentioned, and will display a 100% scatter, with rms deviation equal to their 

mean.  The only cure for this scatter is averaging.  One way is to take M multiple 

successive samplings of the noise stream, each of duration T, to process each of them 

separately, and then to average together M multiple versions of S(f).  Another way is to 

lengthen the (single) observation window by some integer factor F, to get one long list of 

S(f) values with high spectral resolution, and then to give up this resolution by averaging 

together F adjacent frequency-content readings of S(f) to revert to the original spectral 

resolution. The extra observations, by factor M or F, will give M or F less scatter of 

the S(f) values that result. 

 

As an example of the latter, suppose you take N = 2
16

 = 65,536 samples of V(t).  (Powers 

of 2 are convenient, since DFT algorithms reach their highest efficiency for such array 

lengths.)  From the methods above, you'd get back S(f) values at 2
15

 distinct frequencies.  

If you want to end up with local S(f) estimates with scatter of order 10% or less, you'll 

need to average together >100 S(f) values.  So you might average together groups of 128 

high-resolution S(f) values to get S-values of lower frequency resolution.  But you'd still 

have 256 distinct S(f) averages, so your frequency span would be covered with better than 

1% spectral resolution. 

 

When you finally have a table of S(f) values, it is conventional to take the square root of 

each, converting 'power spectral density' S(f) in units of V
2
/Hz into 'voltage spectral 

density' D(f) in units of V/ Hz.  If your electronic signal chain has included pre-amp gain 

G1 and main-amp gain G2, then the voltage noise density at the input of the pre-amp is 

smaller, by factor G1 G2, than the result that you have computed via Fourier methods. 

 

g) Confirmation  

 

You can test the success of your computational route to spectral density by working with 

the Noise Calibrator signal (see Section 5.4.)  You can send it, unfiltered, right into the 

main amplifier, set to its minimum gain, G2 = 10.  If you sample the amplifier's output at 

100 kSa/s (so that t = 10 s), you will end up with S(f)-values in the 0 - 50 kHz range.  

How many samples you can acquire depends on the storage capabilities of your 'scope, 

but even if you take only 10
3
 samples at a time, you can make multiple 'runs' of your 
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experiment to make the M-fold averaging method above work for you.  Your sampling 

and computational route should reproduce a result close to 

 

S(f) = (1.19 mV/ Hz)
2
 = 1.42 x 10

-6
 V

2
/Hz 

 

in the 0 < f < 32 kHz range, and much smaller values beyond the 32-kHz limit of the 

noise source.    



NF Rev ATI 1.2  13.09.2012 

 

A-40 

Appendix A.11. The autocorrelation function of noise 
 

This introduces you to an alternative, and very revealing, method for viewing and 

thinking about noise signals.  It provides a real-time method for understanding the 

spectrum of noise signals, or the bandwidth of circuits.  We present it here first with an 

oscilloscope exercise you can do, and then describe its connection to the 'autocorrelation 

function' which is mathematically connected to the spectral distribution of noise power. 

 

a) Observing a 'qausi-autocorrelation function' 

 

This exercise requires only a source of noise in your Noise Fundamentals experiment, 

and a digital sampling oscilloscope.  To do this experiment does not require the squarer, 

but you should set up your noise source, the pre-amp, a low-pass filter, and the main 

amplifier.  Use a 33-kHz corner frequency for the low-pass filter, and use enough gain in 

the main amp to get its output up to 2~3 Volts (rms measure).  Bring that signal to a 

'scope, and use a vertical sensitivity that covers a 8-V range (to accommodate the range 

of the noise), and use a horizontal scale of 25 s/division. 

 

Now if you've been seeing the noise in an automatic triggering mode, it's time to switch 

to a 'normal' mode, where you choose a trigger level (try a level around +6 Volts) and a 

slope (try positive slope, ie. trigger on signals rising through the +6-V level).  You should 

see plenty of trigger events, since you're triggering on not-too-infrequent positive 

excursions of the noise.  For a first look at these events, try the 'persistence' mode on your 

'scope, and look for a picture like this: 

 
Fig. A.11a:  An example of noise waveforms.  Vertical scale 2 V/div, horizontal scale 25 s/div, 

triggering on positive-going crossings of the +6-V level. 

 

Notice that the trigger point has been centered on the horizontal axis.  Note that every 

trace has the property of passing through the trigger point, both in time and in voltage.  

But also note that after the +6-Volt excursion, the generic trace shows signs of 'reversion 

toward the mean' of zero, within some finite time. 
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To see this in detail, change from the persistence to the 'averaging' mode of your 'scope, 

asking for the average of (say) 128 or 256 traces.  You'll see the averaged view of 

reversion to the mean, with a result resembling this trace: 

 
 

Fig. A.11b:  Signal-averaged waveform in the same arrangement as above .  Vertical scale 2 

V/div, horizontal scale 25 s/div, triggering on positive-going crossings of the +6-V level. 

 

Because every individual trace passes through the trigger point, so does the average.  But 

far enough downstream (or upstream) in time, the average value of the noise signal 

becomes zero again.  What you have is a visual depiction of the 'autocorrelation time', 

which is an answer to the question 'How long does a typical positive excursion of noise 

last?' 

 

To see that this pattern has something to do with your noise signal's spectral distribution, 

here are two comparison tests you can try: 

 

i) change between 33-kHz and 10-kHz settings for the corner frequency of your 

low-pass filter.  (The smaller bandwidth will give less noise power, so you may want to 

lower the trigger-level setting.)  What you will see is a longer duration of the average 

positive excursion. 

 

ii) change between a 33-kHz low-pass filter and a 33-kHz band-pass filter.  (These 

have the same equivalent noise bandwidth, so there'll be no need to change the trigger 

point.)  What you will see in a change in the shape of the result, which is due the 

different spectral composition of the signal you're seeing. 

 

What are you seeing?  Officially, it's called the 'conditional probability distribution', 

which answers the question:  'What is the ensemble-average value of V( ), given that 

V( =0) = +6 Volts?'  [Fine point:  what you're seeing is conditional on a trigger level of 

+6 Volts and a positive slope.  Change to triggering on a negative slope to see how little 

difference this makes.]  Happily, for Gaussian noise, this easy-to-see result on your 

oscilloscope is directly proportional to the autocorrelation function of the noise 

waveform. 
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b) Introducing the autocorrelation function 

 

What lies behind the value of this oscilloscope display is its connection to the 

autocorrelation function or ACF called C( ), which is defined for any signal V(t).  For a 

real-valued function, we define 
 

C( ) = < V(t) V(t- ) > 
 

where the <brackets> stand for time averaging, and where we're assuming that V(t) has 

statistical properties which are independent of time.  In this expression,  is called the 'lag 

time', and this expression measures something about how different V(t) and V(t- ) can be. 

 

It's easy to see that C(0) =  < V(t) V(t-0) > = < [V(t)]
2
 > gives the mean-square measure of 

the noise; this shows that C(0) is always positive, and also shows that C( )'s units are 

Volts-squared.  There are also some properties of the official autocorrelation function  

C( ) which are similar to those of the 'quasi-ACF' which you're viewing on the 'scope. The 

first of them (established via the Cauchy-Schwarz inequality) is that |C( )|  C(0) for any 

choice of .  It's also feasible to show that C( ) = C(- ), which shows that C( ) is a 

function symmetrical about =0 (where it thus has an absolute maximum). 

 

The definition of C( ) also makes it clear why the function drops off with time, and why 

it distinguishes the regimes of short, vs. long, compared to some autocorrelation 

timescale.  If  is short enough, V(t) and V(t- ) will be similar, hence much more likely to 

be of the same (as opposed to opposite) signs.  So the product V(t) V(t- ) will be more 

probably positive than negative, so its time-average will be positive.  By contrast, is  is 

long enough, the present value V(t) will be uncorrelated with its value '  ago' in the past, 

V(t- ).  So at those times when V(t) is positive, V(t- ) will be as likely to be negative as 

positive.  Hence the product V(t) V(t- ) will also be as likely to be negative as positive, 

and so its time average will be near zero. 

 

So the shape of the function C( ), like the quasi-ACF you saw on your 'scope, tells you 

about the degree to which the signal has some 'staying power' or even 'memory'.  That is 

in general not the memory (if any) in the original source of the noise, but rather due 

jointly to the noise source and the bandwidth that might have been imposed upon its 

signal by subsequent filtering.  In fact, there's an inverse relation between bandwidth and 

autocorrelation time:  a truly white-noise signal with bandwidth to f =  would have zero 

autocorrelation time, and act like a system with no memory at all.  But the smaller the 

bandwidth, the longer the autocorrelation time; by the time you get to a pure sinusoid or 

any other periodic signal, the ACF shows non-zero correlations at arbitrarily long lag 

times. 

 

And there's more than this informal connection between spectral distribution and 

autocorrelation function.  It turns out that C( ) on the one hand, and the power spectral 

density S(f) on the other hand, are closely related as a Fourier transform pair.  So 

knowing either function of this pair fully determines the other.  For example, if we had a 

sharp-edged spectral distribution of noise, with S(f) a constant from d.c. up to some 
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maximum frequency fm (but zero beyond that point), then taking the Fourier transform of 

S(f) allows us to predict 

 

C( )  sin(2  fm ) / (2  fm ) , 

 

which has the sinc-function 'wiggles', and displays its first zero-crossings at lags  

 = 1/(2 fm).  The 'wiggles' disappear for spectral distributions lacking as sharp a cutoff 

as in this example, but the width (which was 1/fm , between innermost zeroes, for this 

sharp-edged distribution) will continue to be inversely proportional to the bandwidth of 

the spectral distribution. 

 

It also follows that two sources with distinct spectral distributions (such as the low-pass, 

vs. the band-pass, filtered versions of white noise) must have distinguishable C( ) 

functions.  It also follows that careful measurement of C( )'s values can provide a 

quantitatively reliable way to compute S(f).  The place to pursue this connection is a 

presentation of the Wiener-Khinchin theorem in signal processing. 

 

c) Best use of a 'scope's FFT-capability 

 

If you have used the FFT utility of your 'scope to view the frequency spectrum of a noise 

signal, you may have been horrified at the fluctuations of the spectrum.  A white-noise 

spectrum should give an S(f)-function which is a flat line, but in practice you've seen a 

host of jagged spikes and dips downward from the level you've expected.  Appendix A.10 

deals with some of the cures to this problem that you can impose if you compute your 

own FFTs off-line, but here's a capability which you can execute on your 'scope directly. 

 

Ideally, you could ask for the FFT, and then the 'averaging' mode.  What you'd want is an 

average of many successive spectral distributions.  But what you'll get is the Fourier 

transform of (a bunch of noise waveforms all averaged together).  That doesn't work right  

-- averaging the noise together (first) tends to wash away its strength, so your signal and 

the consequent FFT disappears. 

 

So here's what to do instead.  You set a trigger level as above, and average the time 

waveforms that appear at this trigger level, to get what we've called the quasi-ACF.  Now 

you are using the averaging mode of your 'scope in a way which does not average the 

time-domain signal away toward zero; instead, you're getting a version of the auto-

correlation function C( ).  Then you ask for the FFT, and you'll get the FFT of C( ), and 

what you'll get from the computation is closely related to S(f) -- by the Wiener-Khinchin 

theorem.  What will be displayed may be | S(f) |
2
, so it's hard to use this display with 

quantitative certainty about the scale of its vertical axis.  (The half-power points might be 

depicted at -6-dB down, for example.)  But you will get a display of spectral content with 

markedly smaller scatter, vertically, than you'd get in the direct FFT of the input 

waveform. 
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d) Using the quasi-ACF for analysis 

 

For present purposes, here's another result which is easy to prove about C( ), and also 

easy to observe using the quasi-ACF method on your 'scope.  Suppose that a signal V(t) is 

really the superposition of signals from two distinct sources, 

 

V(t) = Va(t) + Vb(t) . 

 

You could call one of these signal, and the other noise; or it might be that one is the 

desired noise, while the other is undesired noise.  Here's the C( ) you get in this case: 

 

 C( )  = <V(t) V(t- )> 

  = < [Va(t) + Vb(t)] [Va(t- ) + Vb(t- )] > 

  = < Va(t) Va(t- ) > + two cross terms + < Vb(t) Vb(t- ) > . 

 

The cross terms include < Va(t) Vb(t- ) >, which is zero for any and all -values, provided 

only that 'a' and 'b' stand for physically separate, ie. uncorrelated, sources of noise.  So in 

this case, 

 

C( ) = Ca( ) + Cb( ) , 

 

which shows that the ACF you'd observe is simply the sum of the ACFs you'd observe 

from the two sources separately. 

 

You can get a great view of this process with your 'scope-based quasi-ACF.  Try 

grounding the input of your low-pass filter section, set it to a 33-kHz corner frequency, 

and send its output to the main amp, set for maximum gain of 10
4
.  Observe the raw noise 

signal at the output of the main amp, and you'll see on a 'scope an entirely uninformative 

noise waveform, with no hint that it's composed of two kinds of noise.  There's noise 

generated in the filter (with spectrum rolling off at around 33 kHz), and there's noise 

generated in the main amp itself (whose bandwidth extends to 1.5 MHz).  Use your 

view of the net noise to choose the right vertical sensitivity, and to choose a good trigger 

level, and averaging, to produce a quasi-ACF.  Now use sweep speed about 5 s/div and 

look at the result, which should resemble this: 
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Fig. A.11c:  The 'quasi-autocorrelation function' revealing the presence of two kinds of noise in 

the filter-plus-main-amp combination discussed above. 

 

You can view this with a variety of timescale settings on your scope, to get a good view 

of both the narrow peak, and the broad hill atop which it's standing.  You can even see 

some structure in that narrow peak -- look for some little valleys on either side of the 

narrow tall peak.  The value of this exercise is the mental separation it permits.  The 

narrow peak is the part of C( ) due to a signal of short autocorrelation time, which must 

be of large bandwidth -- we identify that as main-amplifier noise.  The full width at the 

base of the sharp peak is about 0.6 s, which corresponds to a noise spectrum extending 

up to fm  1.7 MHz.  The broad hill underlying the peak is the part of C( ) due to a signal 

of long autocorrelation time; that must be of small bandwidth, and we claim it's due to 

noise born in the filter section.  In fact the width of the broad hill is of order 20 s, which 

is consistent with a frequency spectrum extending to about 50 kHz.  And in agreement 

with the bit of theory above, we can now understand why these two pieces of the 

autocorrelation function simply add up to give the shape observed. 

 

To test these claims further, you can change the bandwidth chosen on the filter -- what 

effect should that have?  Or, you can send some white noise into the filter's input, which 

does not change the amount of noise that's actually generated within the main amp -- how 

will this show up?  Or, you could imagine some interference (see Appendix A.5) from 

fluorescent-light ballasts, of frequency perhaps 25 or 48 kHz and approximately 

sinusoidal in character, is underlying your noise -- can you compute what third 

contribution to C( ) that would create?  As a practitioner, you can gain some instinctive 

knowledge from the easily-acquired, real-time quasi-ACF display on your 'scope, and use 

it as a key to diagnosing many kinds of experimental pathologies. 
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Appendix A.12. Fluctuations in measured noise: The Dicke limit 

 
Noise signals are random, and as a result, measurements of 'noise power' display 

statistical fluctuations.  This Appendix explains some nomenclature for these 

fluctuations, and describes and justifies the expected size of the fluctuations. 

 

Let's imagine Johnson noise, or shot noise, measured by a now-familiar arrangements.  

We have an original noise voltage Vn(t), characterized by zero mean but a non-zero 

mean-square.  We pre-amplify it (by gain G1), we filter it to bandwidth f (using filter 

gain function G(f)), we further amplify it (with gain G2), and thus form a filtered and 

amplified noise voltage Vin(t) as input to a squaring circuit.  The mean of Vin(t) is still 

zero. 

 

When we square Vin(t) to get Vout(t) = [ Vin(t) ] 
2 
/ (10 V), we finally get a signal whose 

mean is not zero.  So when we average it over averaging time τ, we get a non-zero 

average 

 

Vmeter = < Vout(t) >  < [Vn(t) ]
2
 >  , 

 

and we can call that concrete meter reading a 'measure of the noise power'.  But we can 

also easily see the visible fluctuations in the meter position, which we can call 

'fluctuations in the measured noise power'.  (They are sometimes called the 'noise in the 

noise', or 'second noise'.) 

 

How big do we expect those fluctuations to be?  This question was first addressed by 

Dicke, in an appendix to the paper [Rev. Sci. Instrum. 17, 268 (1946)] which introduced 

lock-in detection, and which used it to measure room-temperature blackbody radiation in 

the microwave region of the spectrum.  The result is therefore called the 'Dicke 

radiometer limit', usually expressed as a characteristic fluctuation T observed in an 

instrument whose output gives T, a radiometrically-measured source temperature.  

Dicke's result can be written in terms of the bandwidth f  and the averaging time τ as 

 

T / T  ( f  τ) 
-1/2

  . 

 

This result applies more generally than just to temperature measurement by radiometry, 

and it also applies to noise-power measurements as conducted in Noise Fundamentals.  If 

Vmeter(t) is the instantaneous voltage applied to the meter, which is traceably connected to 

the mean-square noise signal < Vn
2
 > at the source, then fluctuations in the meter output 

are also given by 

 

Vmeter / < Vmeter > = const · ( f  τ) 
-1/2

  . 

 

Here Vmeter can be taken to be the standard deviation of a sample of (independent) 

readings of the meter.  The equivalent noise bandwidth used in the filtering chain 

provides the factor f, and the averaging time used between the squarer and the meter 

provides the factor τ.  Finally, the constant is of order 1; its numerical value depends on 
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just what kind of time-averaging is used.  (The TeachSpin equipment uses two successive 

one-pole filters, each of time constant τ, and the predicted value of the constant is about 

one-half.) 

 

So if we measure noise using coverage limited by a low-pass filter of corner frequency 

100 kHz, we have f   114 kHz.  If we choose a τ = 0.1-s averaging time at the meter, 

we get 

 

 Vmeter / < Vmeter > = const · (114 x 10
3
 /s · 0.1 s) 

-1/2
 = const · 0.009 , 

 

so we expect fluctuations of order 0.9% in the meter reading.  Of course we'd have to 

make Vmeter(t) readings at a time spacing of  τ, or at least 0.1 s apart in time, for them to 

represent statistically-independent readings, in computing the fluctuation level. Vmeter as 

a standard deviation. 

 

The dependence of this Dicke limit on f and τ is easily visible.  Keeping τ fixed at 0.1 s, 

to give a set of readings with which the analog meter can 'keep up', you can try out he 

effect of changing from 100 kHz, to 10 kHz, to 1 kHz for the corner frequency of the 

low-pass filter in the high-level electronics.  (Of course, when you reduce the bandwidth, 

you'll want to raise the gain G2 to keep the average meter reading near 1 Volt.)  What you 

should see is visibly larger fluctuations in the meter's position, since the Dicke equation 

predicts fluctuations, about the 1-Volt average, of order 0.9%, growing to 3% and then 

9% as you reduce the bandwidth.  So for the smallest statistical fluctuations in any noise 

measurement, it's always best to use the largest possible bandwidth f.  (Of course, there 

may be growing systematic errors, such as the effects of capacitive roll-off, which 

accompany such a choice of larger f.) 

 

A simple explanation of the reason for a Dicke limit also explains the τ 
-1/2

 dependence.  

We know that the output of the amplifier/filter chain is limited to bandwidth f.  It 

follows that the autocorrelation time of this signal is of order 1/ f.  Thus the use of 100-

kHz bandwidth gives a filtered noise signal with an autocorrelation time of about 10 s.  

Hence there's a 'fresh value', or a statistically-independent measure of <Vin(t)
2
 >, available 

every 10 s.  If we use a τ = 0.1 s averaging time, the number of statistically-independent 

measures of noise power we can make during that time is 

 

N  (0.1 s of time) / (10 s per fresh measurement) = 10
4
  . 

 

The mean of all these 10
4
 measurements is what the meter reveals via its average reading.  

But since those 10
4
 individual readings are each of them random and independent, we 

expect fractional fluctuations of the meter reading to be of order N 
-1/2

.  This hand-waving 

argument in fact gives 

Vmeter / < Vmeter > = 1 N 
-1/2

 = 1 { τ  / ( f)
 -1 

} 
-1/2

 = 1 ( f τ) 
-1/2

  , 

 

just as discussed above. 
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In a computer data-logging environment, it's easy to get a large sample of meter-reading 

voltages.  For any choice of τ, it's easy to test if successive readings, taken at time 

spacing τ (or better, 2τ), display statistical independence (ie. absence of correlation).  It's 

also easy to compute <Vmeter>, and to form the histogram of Vmeter readings (expected to 

be distributed about their mean in Gaussian fashion).  The standard deviation of all the 

readings displayed in the histogram defines the characteristic scale of fluctuations, 

Vmeter.  Then the Dicke limit can be tested empirically for its f and τ dependence. 

 

The Dicke limit also imposes stiff requirements on any noise-based experiment that seeks 

to attain really high precision.  If shot noise were to be used in search of a part-per-

million measurement of e, and if all systematic effects were fully under control, this limit 

would ultimately require some meter reading to display 

 

Vmeter / < Vmeter > = 10 
-6

  , 

 

and that, in turn, would require ( f τ) 
-1/2

 = 10
-6

, or ( f τ) = 10
+12

.  For a bandwidth of  

f   100 kHz = 10
5
 /s, that would require a total averaging time of τ = 10

7
 s, or about 

four months!  (One method for doing this would be to set the meter-averaging switch to a 

1-second time constant, and take one reading every second until 10
7
 readings had been 

collected and averaged.)  This provides another example of the desirability, at least on 

statistical grounds, of using the largest possible bandwidth f. 

 

 


